DOI QR코드

DOI QR Code

유동층 화학기상증착법을 이용하여 제조된 열분해 탄화규소의 특성에 미치는 증착온도의 영향

Effect of Deposition Temperature on the Property of Pyrolytic SiC Fabricated by the FBCVD Method

  • 김연구 (한국원자력연구원 차세대핵연료개발부) ;
  • 김원주 (한국원자력연구원 차세대핵연료개발부) ;
  • 여승환 (한국원자력연구원 차세대핵연료개발부) ;
  • 조문성 (한국원자력연구원 차세대핵연료개발부)
  • Kim, Yeon-Ku (Advanced Fuel Technology Development Division, KAERI) ;
  • Kim, Weon-Ju (Advanced Fuel Technology Development Division, KAERI) ;
  • Yeo, SungHwan (Advanced Fuel Technology Development Division, KAERI) ;
  • Cho, Moon-Sung (Advanced Fuel Technology Development Division, KAERI)
  • 투고 : 2014.10.15
  • 심사 : 2014.11.10
  • 발행 : 2014.12.28

초록

Silicon carbide(SiC) layer is particularly important tri-isotropic (TRISO) coating layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO coated particle. The high temperature deposition of SiC layer normally performed at $1500-1650^{\circ}C$ has a negative effect on the property of IPyC layer by increasing its anisotropy. To investigate the feasibility of lower temperature SiC deposition, the influence of deposition temperature on the property of SiC layer are examined in this study. While the SiC layer coated at $1500^{\circ}C$ obtains nearly stoichiometric composition, the composition of the SiC layer coated at $1300-1400^{\circ}C$ shows discrepancy from stoichiometric ratio(1:1). $3-7{\mu}m$ grain size of SiC layer coated at $1500^{\circ}C$ is decreased to sub-micrometer (< $1{\mu}m$) $-2{\mu}m$ grain size when coated at $1400^{\circ}C$, and further decreased to nano grain size when coated at $1300-1350^{\circ}C$. Moreover, the high density of SiC layer (${\geq}3.19g/cm^3$) which is easily obtained at $1500^{\circ}C$ coating is difficult to achieve at lower temperature owing to nano size pores. the density is remarkably decreased with decreasing SiC deposition temperature.

키워드

참고문헌

  1. J. W. Chang: KAERI/AR-600, (2001).
  2. C. W. Forsberg: Int. J. Hydrogen Energy, 28 (2003) 1073.
  3. H. D. Ringel and E. Zimmer: Nucl. Tech., 45 (1979) 287.
  4. P. Naefe and E. Zimmer: Nucl. Tech., 42 (1979) 163.
  5. J. Schlichting: Powder Metall. Int., 12 (1980) 196.
  6. W. Von Muench: J. Electrochem. Soc., 125 (1978) 294. https://doi.org/10.1149/1.2131431
  7. D. P. Stinton and W. J. Lackey: Ceram. Bull., 57 (1978) 568.
  8. K. Minato and K. Fukuda: J. Nuclear Mater., 149 (1987) 233. https://doi.org/10.1016/0022-3115(87)90482-X
  9. Fukuda, E. Lopez-Honorato: J. Tan and P.J Meadows: J. Nuclear Mater., 392 (2009) 219. https://doi.org/10.1016/j.jnucmat.2009.03.013
  10. M. D. Allendorf and R. J. Kee: J. Electrochem. Soc. 138 (1991) 841. https://doi.org/10.1149/1.2085688
  11. Y. J. Lee, D. J. Choi, J. Y. Park and W. Hong: J. Mater. Sci., 35 (2000) 4519. https://doi.org/10.1023/A:1004808418609
  12. S. Nakashima and H. Harima: Phys. Status Solidi., 39 (1997) 162.
  13. E. Lopez-Honorato, P. J. Meadows, J. Tan and P. Xiao: J. Mater. Res., 23 (2009) 1785.