References
- Amadio, C., Fragiacomo, M. and Rajgelj, S. (2003) "The effects of repeated earthquake ground motions on the non-linear response of SDOF systems", Earthq. Eng. Struct. Dyn., 32, 291-308. https://doi.org/10.1002/eqe.225
- Aschheim, M., Maure, R.E. and Browning, J. (2007), "Dependency of COD on ground motion intensity and stiffness distribution", Struct. Eng. Mech., 27(4), 425-438. https://doi.org/10.12989/sem.2007.27.4.425
- Bertero, V.V., Anderson, J.C., Krawinkler, H. and Miranda, E. (1991), Design Guidelines for Ductility and Drift Limits: Review of State-of-the-Practice and State-of-the-Art in Ductility and Drift-Based Earthquake-Resistant Design of Buildings, Report UCB/EERC-91/15, University of California at Berkeley.
- Diaz-Martinez, G. (2013), "Diseno sismico por desempeno de estructuras esenciales desplantadas en suelos blandos del Valle de Mexico", Ph.D. Dissertation, Universidad Autonoma Metropolitana Unidad Azcapotzalco. Mexico D. F.
- Federal Emergency Management Agency (1998), Evaluation of Earthquake Damaged Concrete and Masonry wall Buildings, Basic Procedures Manual, Report FEMA 306, Washington DC.
- Goda, K. and Taylor, C. (2012), "Effects of aftershocks on peak ductility demand due to strong ground motion records from shallow crustal earthquakes", Earthq. Eng. Struct. Dyn., 41, 2311-2330.
- Hatzigeorgiou, G. and Beskos, D. (2009), "Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes", Eng. Struct., 31, 2744-2755. https://doi.org/10.1016/j.engstruct.2009.07.002
- Hatzigeorgiou, G. (2010), "Ductility demand spectra for multiple near- and far-fault earthquakes", Soil Dyn. Earthq. Eng., 30, 170-183. https://doi.org/10.1016/j.soildyn.2009.10.003
- Hatzigeorgiou, G. and Liolios, A. (2010), "Nonlinear behaviour of RC frames under repeated strong ground motions", Soil Dyn. Earthq. Eng., 30, 1010-1025. https://doi.org/10.1016/j.soildyn.2010.04.013
- Lee, K. and Foutch, D. (2004), "Performance evaluation of damaged steel frame buildings subjected to seismic loads", J. Struct. Eng., 130, 588-599. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(588)
- Li, Q. and Ellingwood, B. (2007), "Performance evaluation and damage assessment of steel frame buildings under mainshock-aftershock sequences", Earthq. Eng. Struct. Dyn. 36, 405-427. https://doi.org/10.1002/eqe.667
- Moustafa, A. and Takewaki, I. (2010), "Modeling critical ground-motion sequences for inelastic structures", Adv. Struct. Eng., 13, 665-679. https://doi.org/10.1260/1369-4332.13.4.665
- Moustafa, A. and Takewaki, I. (2011), "Characterization of earthquake ground motion of multiple sequences", Earthq. Struct., 3, 629-647.
- Moustafa, A. and Takewaki, I. (2012), "Response of nonlinear single-degree-of-freedom structures to ramdom acceleration sequences", Eng. Struct., 33, 1251-1258.
- Pacific Earthquake Engineering Research Center PEER Strong Motion Database. www/http://peer.berkeley.edu/nga/. Last access: 15/08/2014.
- Prakash, V., Powel, G.H. and Campbell, S. (1993), "Drain-2Dx base program description and user guide", Manual, University of California.
- Qi, X. and Moehle, J.P. (1991), "Displacement design approach for reinforced concrete structures subjected to earthquakes", Report UCB/EERC-91/02, University of California at Berkeley.
- Quiroz-Ramirez, A., Arroyo, D., Teran-Gilmore, A. and Ordaz, M. (2014), "Evaluation of the intensity measure approach in performance based earthquake engineering through the use of simulated ground motions", Bull. Seismol. Soc. Am., 104:2, 669-683. https://doi.org/10.1785/0120130115
- Rosenblueth, E. and Meli, R. (1986), "The 1985 Mexico earthquake: causes and effects in Mexico City", Concrete Int. (ACI) 8:5, 23-34.
- Ruiz-Garcia, J., Moreno J. and Maldonado, I. (2008), "Evaluation of existing Mexican high-way bridges under mainshock-aftershock seismic sequences", Proceedings of the 14th World Conference on Earthquake Engineering. Paper: 05-02-0090.
- Ruiz-Garcia, J. and Negrete-Manriquez, J. (2011), "Evaluation of drift demands in existing steel frames under as-recorded far-field and near-fault mainshock-aftershock seismic sequences", Eng. Struct., 33, 621-634. https://doi.org/10.1016/j.engstruct.2010.11.021
- Ruiz-Garcia, J. (2012), "Mainshock-aftershock ground motion features and their influence in building's seismic response", J. Earthq. Eng., 16(5), 719-737. https://doi.org/10.1080/13632469.2012.663154
- Ruiz-Garcia, J., Marin, M.V. and Teran-Gilmore, A. (2014), "Effect of seismic sequences in reinforced concrete frame buildings located in soft-soil sites", Soil Dyn. Earthq. Eng., 63, 56-68. https://doi.org/10.1016/j.soildyn.2014.03.008
- Sociedad Mexicana de Ingeniería Sísmica (1999), "Mexican strong motion database 1960-1999", (Spanish and English).
- Somerville, P.G., Smith, N., Punyamurthula, S. and Sun, J. (1997), Development of Ground Motion Time Histories for Phase 2 of the FEMA/SAC Steel Project, Report SAC/BD-97/04, SAC Joint Venture.
- Teran-Gilmore, A. (2004), "On the use of spectra to establish damage control in regular frames during global predesign", Earthq. Spectra, 20(3), 1-26. https://doi.org/10.1193/1.1647579
- Teran-Gilmore, A. and Virto-Cambray, N. (2009), "Preliminary design of low-rise buildings stiffened with buckling restrained braces by a displacement-based approach", Earthq. Spectra, 25(1), 185-211. https://doi.org/10.1193/1.3054638
- Teran-Gilmore, A. and Coeto, G. (2011), "Displacement-based preliminary design of tall buildings stiffened with a system of buckling-restrained braces", Earthq. Spectra, 27(1), 153-182. https://doi.org/10.1193/1.3543854
- Teran-Gilmore, A., Díaz, G. and Reyes, C. (2013), "Displacement-based conception of moment-resisting frames that house essential facilities", Soil Dyn. Earthq. Eng., 46:1, 96-113. https://doi.org/10.1016/j.soildyn.2012.12.005
- Wong, B. (2009), Plastic Analysis and Design of Steel Structures, Butterworth-Heinemann, Elsevier Ltd. USA.
Cited by
- The influences of aftershocks on the constant damage inelastic displacement ratio vol.79, 2015, https://doi.org/10.1016/j.soildyn.2015.08.011
- Response to seismic sequences of short-period structures equipped with Buckling-Restrained Braces located on the lakebed zone of Mexico City vol.137, 2017, https://doi.org/10.1016/j.jcsr.2017.06.010
- Seismic response of RC frames under far-field mainshock and near-fault aftershock sequences vol.72, pp.3, 2019, https://doi.org/10.12989/sem.2019.72.3.395
- Performance evaluation of buckling-restrained braced frames under repeated earthquakes vol.19, pp.1, 2014, https://doi.org/10.1007/s10518-020-00983-0