DOI QR코드

DOI QR Code

Inductively-Coupled Plasma Chemical Vapor Growth Characteristics of Graphene Depending on Various Metal Substrates

다양한 금속 기판재료에 따른 그래핀의 유도결합 플라즈마 화학기상 성장 특성

  • Kim, Dong-Ok (Department of Materials Science & Engineering, Chungnam National University) ;
  • Trung, Tran Nam (Department of Materials Science & Engineering, Chungnam National University) ;
  • Kim, Eui-Tae (Department of Materials Science & Engineering, Chungnam National University)
  • 김동옥 (충남대학교 공과대학 재료공학과) ;
  • 트란남충 (충남대학교 공과대학 재료공학과) ;
  • 김의태 (충남대학교 공과대학 재료공학과)
  • Received : 2014.10.06
  • Accepted : 2014.11.24
  • Published : 2014.12.27

Abstract

We report the chemical vapor deposition growth characteristics of graphene on various catalytic metal substrates such as Ni, Fe, Ag, Au, and Pt. 50-nm-thick metal films were deposited on $SiO_2/Si$ substrates using dc magnetron sputtering. Graphene was synthesized on the metal/$SiO_2$/Si substrates with $CH_4$ gas (1 SCCM) diluted in mixed gases of 10% $H_2$ and 90 % Ar (99 SCCM) using inductively-coupled plasma chemical vapor deposition (ICP-CVD). The highest quality of graphene film was achieved on Ni and Fe substrates at $900^{\circ}C$ and 500 W of ICP power. Ni substrate seemed to be the best catalytic material among the tested materials for graphene growth because it required the lowest growth temperature ($600^{\circ}C$) as well as showing a low ICP power of 200W. Graphene films were successfully grown on Ag, Au, and Pt substrates as well. Graphene was formed on Pt substrate within 2 sec, while graphene film was achieved on Ni substrate over a period of 5 min of growth. These results can be understood as showing the direct CVD growth of graphene with a highly efficient catalytic reaction on the Pt surface.

Keywords

References

  1. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Choi, and B. H. Hong., Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719
  2. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett., 9, 30 (2009). https://doi.org/10.1021/nl801827v
  3. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312 (2009). https://doi.org/10.1126/science.1171245
  4. X. S. Li, W. W. Cai, L. Colombo, and S. Ruoff, Nano Lett., 9, 4268 (2009). https://doi.org/10.1021/nl902515k
  5. L. V. Nang and E. T. Kim, J. Electrochem. Soc., 159, K93 (2012). https://doi.org/10.1149/2.082204jes
  6. Y. S. Park, H. H. Huh, and E. T. Kim, Korean J. Mater. Res., 19, 522 (2009). https://doi.org/10.3740/MRSK.2009.19.10.522
  7. L. V. Nang and E. T. Kim, Korean J. Mater. Res., 23, 47 (2013). https://doi.org/10.3740/MRSK.2013.23.1.047
  8. J. Kim, M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa, and S. Iijima, Appl. Phys. Lett., 98, 091502 (2011). https://doi.org/10.1063/1.3561747
  9. A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, Nano Lett., 8, 2012 (2008). https://doi.org/10.1021/nl8011566
  10. L. Zhang and R. V. Koka, Mater. Chem. Phys., 57, 23 (1998). https://doi.org/10.1016/S0254-0584(98)00187-4