DOI QR코드

DOI QR Code

Synthesis and Characterization of Non-halogen Type Phosphorus-Based Flame Retardants

비할로겐형 phosphate계 난연제의 합성 및 특성결정

  • 한영균 (태광산업(주) 중앙연구소) ;
  • 민성기 (부경대학교 공과대학 고분자공학과) ;
  • 박찬영 (부경대학교 공과대학 고분자공학과)
  • Received : 2014.10.30
  • Accepted : 2014.11.21
  • Published : 2014.12.31

Abstract

Among many types of flame retardants, the most available halogen-containing flame retardants were put under environmental restrictions in their use, so non-halogen type phosphorus-based flame retardants have come into the spotlight. When added to resins, flame retardants commonly bring about thermal degradation and decrease in mechanical properties of resins. Studies of new flame retardants were carried out in an attempt to minimize degradation of physical properties and require enough flame retardancy. In this study, three types of non-halogen phosphorus-based flame retardants were synthesized with diaryl alkyl phosphate esters, aromatic phosphate esters and phosphonium nitron flame retardants, which were then identified for the synthesis and thermal properties by gas chromatography (GC), IR and thermal gravimetric analysis (TGA).

난연제 가운데 가장 많이 사용되는 할로겐 함유 난연제는 사용상 환경적인 제한을 받고 있어서 비할로겐타입인 인계에 기초한 난연제가 각광을 받고 있다. 난연제는 수지에 가해지는 경우에 흔히 열분해와 기계적 특성저하를 일으킨다. 물성의 열화를 최소화하고 충분한 난연성을 얻기 위한 시도로 새로운 난연제에 대한 연구를 수행하였다. 본 연구에 있어서는 diaryl alkyl phosphate esters, aromatic phosphate esters 및 phosphonium nitron 난연제 등 세가지 형태의 비할로겐 인계에 기초한 난연제를 합성하여 GC, IR 및 TGA 등으로 합성 및 열적 특성을 확인하였다.

Keywords

References

  1. A. F. Grand, C. A. Wilkie. Fire retardancy of polymeric materials. New York: Marcel Dekker, Inc; (2000).
  2. J. Troitzsch, International plastics flammability handbook. 2nd ed. New York: Hanser Publishers; (1990).
  3. B. Y. Jo, S. C. Moon, J. K. Choi, "Preparation and Properties of the Flame Retarded NBR Foams with Phosphorus/ Nitrogen-Containing Flame Retardants" Elast. Compos., 39, 105, (2004).
  4. H. Horacek, R. Grabner, "Advantages of flame retardants based on nitrogen compounds", Polym. Degrad. Stab., 54, 205, (1996). https://doi.org/10.1016/S0141-3910(96)00045-6
  5. S. Gaan, G. Sun, K. Hutches, M. H. Engelhard, "Effect of nitrogen additives on flame retardant action of tributyl phosphate: Phosphorus-nitrogen synergism", Polym. Degrad. Stab., 93, 99 (2008). https://doi.org/10.1016/j.polymdegradstab.2007.10.013
  6. S. V. Levchik, A. I. Balabanovick, G. F. Levchik, L. Cost, "Effect of melamine and its salts on combustion and thermal decomposition of polyamide 6", Fire and Materials, 21, 75 (1997). https://doi.org/10.1002/(SICI)1099-1018(199703)21:2<75::AID-FAM597>3.0.CO;2-P
  7. P. Gijsman, R. Steenbakkers, C. Furst, J. Kersjes, "Differences in the flame retardant mechanism of melamine cyanurate in polyamide 6 and polyamide 66", Polym. Degrad. Stab., 78, 219, (2002). https://doi.org/10.1016/S0141-3910(02)00136-2
  8. M. Thirumal, D. Khastgir, N. K. Singha, B. S. Manjunath, Y. P. Naik. "Effect of foam density on the properties of water blown rigid polyurethane foam", J. Appl. Polym. Sci., 180, 1810, (2008).
  9. J. Green, in Fire Retardant of Polymeric Materials, A. F. Grand and C. A. Willkie, Editors, New York : Marcel Deeker, Chap.5 (2000).
  10. G. L. Nelson in Fire and Polymer II, G. L. Nelson, Editor, ACS Symposium Series, 599, 579 (1995).
  11. M. Liu, Y. Liu, Q. Wang, "Flame-Retarded Poly(propylene) with Melamine Phosphate and Pentaerythritol/Polyurethane Composite Charring Agent", Macromol. Mater. Eng., 292, 206, (2007). https://doi.org/10.1002/mame.200600353
  12. M. Modesti, A. Lorenzetti, "Flame retardancy of polyisocyanurate- polyurethane foams: use of different charring agents", Polym. Degrad. Stab., 78, 341, (2002). https://doi.org/10.1016/S0141-3910(02)00184-2
  13. W. Y. Chen, Y. Z. Wang, F. C. Chang, "Thermal and Flame Retardation Properties of Melamine Phosphate-Modified Epoxy Resins", J. Polym. Res., 11, 109, (2004). https://doi.org/10.1023/B:JPOL.0000031069.23622.bc
  14. L. Song, Y. Hu, Y. Tang, R. Zhang, Z. Chen, W. Fan, "Study on the properties of flame retardant polyurethane/organoclay nanocomposite", Polym. Degrad. Stab., 87, 111, (2005). https://doi.org/10.1016/j.polymdegradstab.2004.07.012
  15. U. Braun, B. Schartel, M. A. Fichera, C. Jager, "Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6", Polym. Degrad. Stab., 92, 1528, (2007). https://doi.org/10.1016/j.polymdegradstab.2007.05.007
  16. F. Siminoi, M. Chechin, M. Modesti, A. Lorenzetti, "Influence of different flame retardants on fire behaviour of modified PIR/PUR polymers", Polym. Degrad. Stab., 74, 475, (2001). https://doi.org/10.1016/S0141-3910(01)00171-9
  17. M. Thirumal, D. Khastgir, N. K. Singha, B. S. Manjunath, Y. P. Naik, "Effect of expandable graphite on the properties of intumescent flame-retardant polyurethane foam", J. Appl. Polym. Sci., 110, 2586, (2008). https://doi.org/10.1002/app.28763
  18. B. Y. Jo, S. C. Moon, J. K. Choi, "Effect of Waste Ground Tire Rubber on Flame Retardancy and Foaming Properties of the NBR foams", Elast. Compos., 38, 251, (2003).
  19. Y. Chen, Q. Wang, W. Yan, H. Tang, "Preparation of flame retardant polyamide 6 composite with melamine cyanurate nanoparticles in situ formed in extrusion process", Polym. Degrad. Stab., 91, 2632, (2006). https://doi.org/10.1016/j.polymdegradstab.2006.05.002
  20. S. H. Jonathan,, Transesterification process, USP, No.6075158, JUN. 13 (2000).

Cited by

  1. Mechanical Properties and Flame Retardancy of Rigid Polyurethane Foam Using New Phosphorus Flame Retardant vol.27, pp.6, 2016, https://doi.org/10.14478/ace.2016.1079