DOI QR코드

DOI QR Code

Computer Simulation of the Effects of Content and Dispersion of Impact Modifier on the Impact Strength of Nylon 6 Composites

충격보강제의 함유량과 분산이 나일론 6 복합체의 충격강도에 미치는 영향의 컴퓨터 해석

  • Woo, Jeong Woo (Graduate School, Seoul National University of Science and Technology) ;
  • Lyu, Min-Young (Department of Machanical System Design Engineering, Seoul National University of Science and Technology)
  • 우정우 (서울과학기술대학교 대학원 제품설계금형공학과) ;
  • 류민영 (서울과학기술대학교 기계시스템디자인공학과)
  • Received : 2014.10.14
  • Accepted : 2014.11.13
  • Published : 2014.12.31

Abstract

Polymer has low mechanical strength than metal. In particular, the impact strength is very weak. Impact modifier reinforced polymers are frequently used. Impact strength of reinforced polymer is changed according to content and distribution of impact modifier. In this study, izod impact test has been simulated to analyze the mechanism of impact modifier reinforced Nylon 6. Computational results were compared for numbers and distributions of impact modifier. As the total volume of rubber particles decreased, the stress at the notch increased for the simulation model that the volume decreases as particle number increases. As the surface area of particle sphere increased, the stress and difference of principle stress increased for the simulation model that the total surface increases as particle number increases.

고분자 소재는 금속 소재에 비해 기계적 강도, 특히 충격강도가 매우 취약하기 때문에 이의 증대를 위해 충격보강제를 이용하는 경우가 많다. 이러한 충격강도는 충격보강제의 함량과 분포에 따라 변화한다. 본 연구에서는 충격보강제가 함유된 나일론 6 시편에 대해서 충격시험을 모사하였고 충격시편 단면에서의 응력분포를 통해 충격강도 증대원리를 관찰하였다. 시편 단면에서 충격보강제의 개수와 분포에 따른 해석을 하여 비교하였다. 충격보강제의 개수가 증가할수록 부피가 감소하는 모델의 경우 놋치 표면의 응력과 주응력의 크기가 점차 높게 나타났다. 충격보강제의 개수가 증가할수록 충격보강제 전체의 총 표면적이 증가하는 모델의 경우에는 응력과 주응력이 점차 높게 관찰되었다.

Keywords

References

  1. C. B. Bucknall, D. R. Paul, "Notched impact behavior of polymer blends: Part 1: New model for particle size dependence", Polymer, 50, 5539 (2009). https://doi.org/10.1016/j.polymer.2009.09.059
  2. R. J. M. Borggreve, R. J. Gaymans, J. Schuijer and J. F. Housz, "Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle size", Polymer, 28, 1489 (1987). https://doi.org/10.1016/0032-3861(87)90348-X
  3. R. J. M. Borggreve, R. J. Gaymans, and H. M. Eichenwald, "Impact behaviour of nylon-rubber blends: 6. Influence of structure on voiding processes; toughening mechanism", Polymer, 30, 78 (1989). https://doi.org/10.1016/0032-3861(89)90386-8
  4. J.J. Huang, H. Keskkula, and D.R. Paul, "Comparison of the toughening behavior of nylon 6 versus an amorphous polyamide using various maleated elastomers", Polymer, 47, 639 (2006). https://doi.org/10.1016/j.polymer.2005.11.088
  5. R. A. Kudva, H. Keskkula and D. R. Paul, "Fracture behavior of nylon 6/ABS blends compatibilized with an imidized acrylic polymer", Polymer, 41, 335 (2000). https://doi.org/10.1016/S0032-3861(99)00244-X
  6. Meredith N. Silberstein, "Mechanics of Notched Izod Impact Testing of Polycarbonate", Massachusetts Institute of Technology (2005).
  7. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, "Mechanical properties of nylon 6-clay hybrid", J. Mater. Res., 8, 1185 (1993). https://doi.org/10.1557/JMR.1993.1185
  8. D. R. Holmes, C. W. Bunn, and D. J. Smith, "The crystal structure of polycaproamide: Nylon 6", J. Polym. Sci., 17, 159 (1955). https://doi.org/10.1002/pol.1955.120178401
  9. G. X. Chen, H. S. Kim, B. H. Park, and J. S. Yoon, "Multiwalled carbon nanotubes reinforced nylon 6 composites" Polymer, 47, 4760 (2006). https://doi.org/10.1016/j.polymer.2006.04.020
  10. K. Dijkstra, J. Ter Laak, and R. J. Gaymans,"Nylon-6/rubber blends: 6. Notched tensile impact testing of nylon-6/(ethylene-propylene rubber)blends", Polymer, 35, 315 (1994). https://doi.org/10.1016/0032-3861(94)90696-3
  11. A. Gonzalez-Montiel, H. Keskkula, and D. R. Paul, "Impactmodified nylon 6/polypropylene blends: 2. Effect of reactive functionality on morphology and mechanical properties", Polymer, 36, 4605 (1995). https://doi.org/10.1016/0032-3861(95)96829-W
  12. Y. H. Park, M. Y. Lyu, D. R. Paul, "Computer simulation of Izod Impact test for impact modifier reinforced Nylon 6", Elast. Compos., 48, 172 (2013). https://doi.org/10.7473/EC.2013.48.2.172
  13. "Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics". ASTM International
  14. A. J. Oshinski, H. Keskkula and D. R. Paul, "The role of matrix molecular weight in rubber toughened nylon 6 blends:2. Room temperature Izod impact toughness", Polymer, 37, 4909 (1996). https://doi.org/10.1016/0032-3861(96)00374-6
  15. Y. Kayano, H. Keskkula, and D. R. Paul, "Fracture behaviour of some rubber-toughened nylon 6 blends", Polymer, 39, 2835 (1998). https://doi.org/10.1016/S0032-3861(97)00600-9
  16. R. A. Pearson, A. F. Yee, "Influence of particle size and particle size distribution on toughening mechanisms in rubbermodified epoxies" J. Mat. Sci., 26, 3828 (1991). https://doi.org/10.1007/BF01184979
  17. N. J. Mills, "The mechanism of brittle fracture in notched impact tests on polycarbonate", J. Mater. Sci., 11, 363 (1976). https://doi.org/10.1007/BF00551448
  18. R. A. Deblieck, D. J. M. Van Beek, K. Remerie, and I. M. Ward, "Failure mechanisms in polyolefines: The role of crazing, shear yielding and the entanglement network", Polymer, 52, 2979 (2011). https://doi.org/10.1016/j.polymer.2011.03.055
  19. A. J. Oshinski, H. Keskkula, and D. R. Paul. "The role of matrix molecular weight in rubber toughened nylon 6 blends:1. Morphology", Polymer, 37, 4891 (1996). https://doi.org/10.1016/0032-3861(96)00373-4
  20. T. D. Fornes, P. J. Yoon, H. Keskkula, and D. R. Paul, "Nylon 6 nanocomposites: the effect of matrix molecular weight", Polymer, 42, 9929 (2001). https://doi.org/10.1016/S0032-3861(01)00552-3