DOI QR코드

DOI QR Code

Anti-Melanogenic, Anti-Wrinkle, Anti-Inflammatory and Anti-Oxidant Effects of Xylosma congesta leaf Ethanol Extract

산유자 잎 에탄올 추출물의 미백, 주름억제, 항염증 및 항산화 효능

  • Lee, Jae Yeon (Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion) ;
  • Ahn, Eun-Kyung (Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion) ;
  • Ko, Hye-Jin (Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion) ;
  • Cho, Young-Rak (Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion) ;
  • Ko, Woon Chul (Jeju Bio-diversity Research Institute) ;
  • Jung, Yong-Hwan (Jeju Bio-diversity Research Institute) ;
  • Choi, Kyung-Min (Institute of JinAn Red Ginseng) ;
  • Choi, Mi-Rae (Institute of JinAn Red Ginseng) ;
  • Oh, Joa Sub (College of Pharmacy, Dankook University)
  • Received : 2014.08.01
  • Accepted : 2014.09.02
  • Published : 2014.12.31

Abstract

In the present study, we investigated the biological activities of Xylosma congesta leaf ethanol extract (XCO) using a variety of in vitro and cell culture model systems for anti-melanogenic, anti-wrinkle, anti-inflammatory and anti-oxidant activities. First, XCO markedly inhibited ${\alpha}$-melanocyte stimulating hormone-stimulated melanin synthesis in B16F10 cells. Secondly, XCO marginally induced procollagen synthesis in CCD-986SK cells. Thirdly, XCO dose-dependently suppressed lipopolysaccharide-induced nitric oxide (NO) production in RAW 264.7 cells. XCO did not affect cell viability at different concentrations used in this study, indicating that XCO-mediated inhibition of melanin, procollagen and NO synthesis is not mediated by cytotoxicity. Finally, XCO was found to exert anti-oxidant effect. Taken together, these findings demonstrate for the first time that XCO possesses anti-melanogenic, anti-wrinkle, anti-inflammatory and anti-oxidant activities, and suggest further evaluation and development of XCO as a functional supplement or cosmetic that may be useful for whitening skin, reducing wrinkles and treating inflammatory responses.

본 연구는 제주도 해변의 벌판에서 드물게 자라는 산유자(Xylosma congesta) 잎 에탄올 추출물의 화장품 기능성 소재로서의 활용 가능성을 알아보기 위하여 cell culture model 및 in vitro assay system을 이용하여 미백, 주름개선, 항염증 및 항산화 활성을 분석하였다. 그 결과 산유자 잎 에탄올 추출물은 B16F10 세포에 세포독성 없이 효과적으로 ${\alpha}$-MSH에 의해 유도된 melanin 합성을 억제함으로써 높은 미백 활성을 가지는 것이 관찰되었다. CCD-986SK 세포를 이용하여 산유자 잎 에탄올 추출물의 주름개선 활성 능력을 procollagen 합성시험을 통해 분석한 결과, 양성 대조군으로 사용한 TGF-${\beta}$ 만큼은 아니지만 농도별로 각각 120, 122%의 procollagen 합성을 증가시키는 것을 통하여 산유자 잎 에탄올 추출물의 주름개선 활성을 확인하였다. 또한 RAW 264.7 murine macrophage를 이용하여 NO 생성 억제능을 분석함으로써 산유자 잎 에탄올 추출물의 항염증 활성 정도를 측정한 결과, LPS에 의해 유도된 NO 생성이 산유자 잎 에탄올 추출물의 농도 의존적으로 감소하는 결과를 얻을 수 있었다. DPPH 법, ABTS 법, ORAC 법을 이용하여 항산화 활성을 분석한 결과, $50{\mu}g/mL$의 농도에서 DPPH 및 ABTS 라디칼 소거능이 각각 75.2, 99.1% 증가하는 것이 확인 되었다. ORAC activity assay kit를 이용하여 항산화 활성을 측정한 결과 산유자 잎 에탄올 추출물의 농도에 따라 높은 항산화 활성이 관찰 되었고, DPPH와ABTS 라디칼 소거능 결과와 유사하게 $50{\mu}g$/mL의 농도에서 가장 높은 항산화 활성($573.74{\pm}0.79{\mu}M$ TE/g)을 나타내었다. 이러한 결과를 통하여 산유자 잎 에탄올 추출물이 높은 미백과 주름개선, 항염증 및 항산화 활성을 나타내는 것을 확인 할 수 있었으며, 기능성 화장품 소재로서의 활용가능성을 제시 할 수 있었다.

Keywords

References

  1. Ames BN (1983) Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 221, 1256-64. https://doi.org/10.1126/science.6351251
  2. Aroca P, Urabe K, Kobayashi T, Taskamoto K, and Hearing VJ (1993) Melanin biosynthesis patterns of following hormonal stimulation. J Biol Chem 268, 25650-5.
  3. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181, 1198-200.
  4. Bondet V, Brand-Williams W, and Berset C (1997) Kinetics and mechanisms of antioxidant activity using the DPPH. free radical method. LWT-Food Sci Technol 30, 609-15. https://doi.org/10.1006/fstl.1997.0240
  5. Cabanes J, Chazara S, and Garcia CF (1994) Kojic acid, a cosmetic skin whitening agent, is slow-binding inhibitor of catecholase activity of tyrosinase. J Pharm Pharmacol 46, 982-5. https://doi.org/10.1111/j.2042-7158.1994.tb03253.x
  6. Callender VD, St Surin-Lord S, Davis EC, and Maclin M (2011) Postinflammatory hyperpigmentation: etiologic and therapeutic considerations. Am J Clin Dermatol 12, 87-99. https://doi.org/10.2165/11536930-000000000-00000
  7. Chen JS, Wei C, and Marshall MR (1991) Inhibition mechanism of Kojic acid on polyphenol oxidase. J Agric Food Chem 39, 1897-901. https://doi.org/10.1021/jf00011a001
  8. Costin GE and Hearing VJ (2007) Human skin pigment-ation: melanocytes modulate skin color in response to stress. FASEB J 21, 976-94. https://doi.org/10.1096/fj.06-6649rev
  9. DeLange RJ and Glazer AN (1989) Phycoerythrin fluorescence-based assay for peroxy radicals: a screen for biologically relevant rotective agents. Anal Biochem 28, 300-6.
  10. Dudonne S, Vitrac X, Coutiere P, Woillez M, and Merillon JM (2009) Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem 57, 1768-74. https://doi.org/10.1021/jf803011r
  11. Fridovich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247, 1-11. https://doi.org/10.1016/0003-9861(86)90526-6
  12. Ghiselli A, Serafini M, Maiani G, Azzini E, and Ferro-Luzzi A (1995) A fluorescence-based method for measuring total plasma antioxidant capability. Free Radic Biol Med 18, 29-36. https://doi.org/10.1016/0891-5849(94)00102-P
  13. Jimenze-Cervants C, Solano F, Kobayashi T, Urabe K, Hearing VJ, Lozano J et al. (1994) A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). J Biol Chem 269, 17993-8000.
  14. Jin KS, Oh YN, Park JA, Lee JY, Jin SJ, Hyun SK et al. (2012) Anti-Oxidant, Anti-Melanogenic, and Anti-Inflammatory Activities of Zanthoxylum schinifolium Extract and its Solvent Fractions. Korean J Microbiol Biotechnol 40, 371-9. https://doi.org/10.4014/kjmb.1207.07023
  15. Jung SW, Lee NK, Kim SJ, and Han D (1995) Screening of tyrosinase inhibitor from plants. Kor J Food Sci Technol 27, 891-6.
  16. Kang MC, Lee JY, Ko RK, Kim HB, Hong SH, and Kim GO (2009) Melanin inhibitory effect abd anti-inflammatory effects of Dictyota corlacea extracts derived from adjacent sea of the Jeju island. Korean J Biotechnol Bioeng 23, 311-6.
  17. Kawabata T, Cui MY, Hasegawa T, Takano F, and Ohta T (2011) Antiinflammatory and anti-melanogenic steroidal saponin glycosides from Fenugreek (Trigonella foenum-graecum L.) seeds. Planta Med 77, 705-10. https://doi.org/10.1055/s-0030-1250477
  18. Kawamata H, Ochiai H, Mantani N, and Terasawa K (2000) Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW 264.7 cells, a murine macrophage cell line. Am J Chin Med 28, 217-26. https://doi.org/10.1142/S0192415X0000026X
  19. Lee KH, Kong JH, Cho YL, Joo CG, Kwon SS, Hwang JS et al. (2012) Anti-microbial and Anti-wrinkle effect of kaempferol and kaempferol rhamnosides isolated from Hibiscus cannabinus L. Korean J Medicinal Crop Sci 20, 454-60. https://doi.org/10.7783/KJMCS.2012.20.6.454
  20. Lerner AB and Fitzpatrick TB (1950) Biochemistry of melanin formation. Physiol Rev 30, 91-126.
  21. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, and Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci (Lond) 84, 407-12.
  22. Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, and Deemer EK (2002) Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem 50, 3122-8. https://doi.org/10.1021/jf0116606
  23. Ozgen M, Reese RN, Tulio AZ, Scheerens JC, and Miller AR (2006) Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem 54, 1151-7. https://doi.org/10.1021/jf051960d
  24. Panich U, Tangsupa-a-nan V, Onkoksoong T, Kongtaphan K, Kasetsinsombat K, Akarasereenont P et al. (2011) Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system. Arch Pharm Res 34, 811-20. https://doi.org/10.1007/s12272-011-0515-3
  25. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, and Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26, 1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3
  26. Regoli F and Winston GW (1999) Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals. Toxicol Appl Pharmacol 156, 96-105. https://doi.org/10.1006/taap.1999.8637
  27. Rice-Evans C and Miller NJ (1994) Total antioxidant status in plasma and body fluids. Methods Enzymol 234, 279-93. https://doi.org/10.1016/0076-6879(94)34095-1
  28. Rice-Evans CA, Miller NJ, and Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20, 933-56. https://doi.org/10.1016/0891-5849(95)02227-9
  29. Song HM, Seo MS, Kim HM, Ahn MS, and Lee YT (2002) Antioxidative activity of barley polyphenol extract (BPE) separated from pearling by-products. Kor J Food Sci Technol 34, 889-92.
  30. Tatsuno T, Jinno M, Arima Y, Kawabata T, Hasegawa T, Yahagi N et al. (2011) Anti-inflammatory and anti-melanogenic proanthocyanidin oligomers from peanut skin. Biol Pharm Bull 35, 909-16.
  31. Urabe K, Aroca P, Tsukamoto K, Mascagna D, Paulumbo A, Prota G et al. (1994) The inherent cytotoxicity of melanin precursors. Biochim Biophys Acta 1221, 272-8. https://doi.org/10.1016/0167-4889(94)90250-X
  32. Winston GW, Regoli F, Dugas AJ Jr, Fong JH, and Blanchard KA (1998) A rapid gas chromatographic assay for determining oxyradical scavenging capacity of antioxidants and biological fluids. Free Radic Biol Med 24, 480-93. https://doi.org/10.1016/S0891-5849(97)00277-3
  33. Yang EJ, Yim EY, Song GP, Kim GO, and Hyun CG (2009) Inhibition of nitric oxide production in lipopolysaccharide-activated RAW 264.7 macrophages by Jeju plant extracts. Interdisc Toxicol 2, 245-9.
  34. Zurick KM, Qin C, and Bernards MT (2012) Adhesion of MC3T3-E1 cells bound to dentin phosphoprotein specifically bound to collagen type I. J Biomed Mater Res A 100, 2492-8.

Cited by

  1. Anti-Inflammatory Effect of Ethanol Extract from Grateloupia elliptica Holmes on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1128
  2. Applicability of Lindera obtusiloba Flower Extracts as Cosmetic Ingredients vol.15, pp.2, 2014, https://doi.org/10.20402/ajbc.2016.0088
  3. Efficacy of Cosmetic Materials Using Aronia melanocarpa Leaf Extracts vol.16, pp.2, 2014, https://doi.org/10.20402/ajbc.2017.0166
  4. Effects of Samhwangtang aqueous extract on anti-oxidant and anti-inflammatory activity in RAW 264.7 macrophage cells. vol.14, pp.2, 2014, https://doi.org/10.15810/jic.2018.14.2.008
  5. 진피로부터 정제한 Syringin의 항산화 및 항균 활성 vol.30, pp.8, 2014, https://doi.org/10.5352/jls.2020.30.8.695
  6. Skin-Whitening and Anti-Wrinkle Effects of Bioactive Compounds Isolated from Peanut Shell Using Ultrasound-Assisted Extraction vol.26, pp.5, 2021, https://doi.org/10.3390/molecules26051231