DOI QR코드

DOI QR Code

Norsesquiterpenes from the Roots of White Kwao Krua (Pueraria mirifica)

태국칡(Pueraria mirifica)으로부터 norsesquiterpene의 분리 및 동정

  • Kwon, Jung-Hwa (Graduate School of Biotechnology & Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Cho, Jin-Gyeong (Graduate School of Biotechnology & Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Park, Hee-Jung (Graduate School of Biotechnology & Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Huh, Gyu-Won (Graduate School of Biotechnology & Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Bang, Myun-Ho (Graduate School of Biotechnology & Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Han, Min-Woo (Graduate School of Biotechnology & Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Oh, Chang-Hwan (Oriental Medical Food &Nutrition, Semyung University) ;
  • Ko, Sung-Kwon (Oriental Medical Food &Nutrition, Semyung University) ;
  • Cho, Soo-Yeul (Advanced Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food & Drug Administration) ;
  • Chai, Kap-Yong (Advanced Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food & Drug Administration) ;
  • Kim, Jin-Ho (Advanced Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food & Drug Administration) ;
  • Baek, Nam-In (Graduate School of Biotechnology & Department of Oriental Medicine Biotechnology, Kyung Hee University)
  • Received : 2014.05.13
  • Accepted : 2014.07.15
  • Published : 2014.12.31

Abstract

The roots of Pueraria mirifica were extracted with 70% aqueous ethyl alcohol and partitioned into ethyl acetate (EtOAc), n-butyl alcohol (BuOH), and $H_2O$ fractions, successively. From the EtOAc fraction, four norsesquiterpenes were isolated through the repeated silica gel, octadecyl silica gel and Sephadex LH-20 column chromatographies. On the basis of physicochemical and spectroscopic data including nuclear magnetic resonance (NMR), mass spectrometry, and infrared spectroscopy, the chemical structures were identified as megastigm-5-en-3,9-diol (1), linarionoside B (2), 3,5,6,9-tetrahydroxymegastigm-7-ene (3) and 3,4,9-trihydroxymegastigma-5,7-diene (4). Especially, the configuration of the anomer hydroxyl group was determined as a from the coupling constants of the anomer proton (J =8.0 Hz) in the $^1H$-NMR spectrum. These compounds were isolated for the first time from the roots of P. mirifica in this study.

Pueraria mirifica 뿌리를 실온에서 70% EtOH 수용액으로 추출하고 이 추출물을 EtOAc 분획, n-BuOH 분획, $H_2O$ 분획으로 나누었다. EtOAc 분획에 대하여 silica gel, octadecyl silica, 및 Sephadex LH-20 c.c.를 반복 실시하여 4종의 화합물을 분리, 정제하였다. Nuclear magnetic resonance, infrare, 및 mass spectrometry의 spectroscopic data를 해석하여, 화합물 1-4를 각각 megastigm-5-en-3,9-diol, linarionoside B, 3,5,6,9-tetrahydroxy-megastigm-7-ene 및 3,4,9-trihydroxymegastigma-5,7-diene으로 구조를 결정하였다. 화합물 1-4 모두 P. mirifica에서는 이번에 처음으로 분리된 화합물이다.

Keywords

References

  1. Achenbach H, Lottes M, Waibel R, Karikas GA, Correa A, and Gupta MP (1995) Alkaloids and other compounds from Psychotria correae. Phytochemistry 38, 1537-45. https://doi.org/10.1016/0031-9422(94)00823-C
  2. Bang MH, Lee DK, Baek YS, Cho JG, Han MW, Choi KS et al. (2013) A new miroestrol glycoside from the roots of Pueraria mirifica. Chem Nat Compd 49, 443-5. https://doi.org/10.1007/s10600-013-0634-9
  3. Cain JC (1960) Miroestrol: an estrogen from the plant Pueraria mirifica. Nature 188, 774-7. https://doi.org/10.1038/188774a0
  4. Chandeying V and Lamlertkittikul S (2007) Challenges in the conduct of thai herbal scientific study: efficacy and safety of phytoestrogen, Pueraria mirifica (kwao keur kao), phase1, in the alleviation of climacteric symptoms in perimenopausal women, J Med Assoc Thai 90, 1274-80.
  5. Chansakaow S, Ishikawa T, Sekine T, Okada M, Higuchi Y, and Kudo M (2000) Isoflavonoids from Pueraria mirifica and their estrogenic activity. Planta Med 66, 572-5. https://doi.org/10.1055/s-2000-8603
  6. Cox A, Skouroumounis GK, Elsey GM, Perkins MV, and Sefton MA (2005) Generation of (E)-1-(2,3,6-trimethylphenyl)buta-1,3-dien from $C_{13}$-norisoprenoid precursors. J Agric Food Chem 53, 6777-83. https://doi.org/10.1021/jf051039w
  7. Dziedzic SZ (1988) Coumestans from the roots of Pueraria mirifica. J Biosci 2, 5-10.
  8. Jaroenporn S, Malaivijitnond S, Wattanasiirmkit K, Trisomboon H, Watanabe G, Taya K et al. (2006) Effects of Pueraria mirifica, an herb containing phytoestrogens, on reproductive organs and fertility of adult male mice. Endocr J 30, 93-101. https://doi.org/10.1385/ENDO:30:1:93
  9. Lin TC, Fang JM, and Cheng YS (1999) Terpenes and lignans from leaves of Chamaecyparis formosensis. Phytochemistry 51, 793-801. https://doi.org/10.1016/S0031-9422(99)00074-6
  10. Lof M and Weiderpassa E (2006) Epidemiologic evidence suggests that dietary phytoestrogen intake is associated with reduced risk of breast, endometrial, and prostate cancers. Nutr Res 26, 609-19. https://doi.org/10.1016/j.nutres.2006.09.020
  11. Macias FA, Lacret R, Varela RM, Nogueiras C, and Molinillo JMG (2008) Bioactive apocarotenoids from Tectona grandis. Phytochemistry 69, 270815.
  12. Malaivijitnond S (2012) Medicinal applications of phytoestrogens from the Thai herb Pueraria mirifica. Front Med 6, 8-21. https://doi.org/10.1007/s11684-012-0184-8
  13. Malaivijitnond S, Tungmunnithum D, Gittarasanee S, Kawin K, and Limjunyawong N (2010) Puerarin exhibits weak estrogenic activity in female rats. Fitoterapia 81, 569-79. https://doi.org/10.1016/j.fitote.2010.01.019
  14. Manonai J, Chittacharoen A, Theppisai U, and Theppisai H (2007) Effect of Pueraria mirifica on vaginal health. Menopause 14, 811-959. https://doi.org/10.1097/gme.0b013e3181565c82
  15. Otsuka H (1994) Linarionosides A-C and acyclic monoterpene diglucosides from Linaria japonica. Phytochemistry 37, 461-5. https://doi.org/10.1016/0031-9422(94)85080-1
  16. Otsuka H, Zhong XN, Hirata E, Shinzato T, and Takeda Y (2001) Myrsinionosides A-E: Megastigmane glycosides from the leaves of Myrsine seguinii LEV. Chem Pharm Bull 49, 1093-7. https://doi.org/10.1248/cpb.49.1093
  17. Panza E, Tersigni M, Iorizzi M, Zollo F, De Marino S, Festa C et al. (2011) Lauroside B, a megastigmane glycoside from Laurus nobilis (bay laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-eB activation, J Nat Prod 74, 22833.
  18. Park JH, Lee DG, Yeon SW, Kwon HS, Ko JH, Shin DJ et al. (2011) Isolation of Megastigmane Sesquiterpenes from the Silkworm (Bombyx mori L.) Droppings and Their Promotion Activity on HO-1 and SIRT1, Arch Pharm Res 34, 533−42. https://doi.org/10.1007/s12272-011-0403-x
  19. Sonee M, Sum T, Wang C, and Mukherjee SK (2004) The soy isoflavone, genistein, protects human cortical neuronal cells from oxidative stress. Neurotoxicology 25, 885-91. https://doi.org/10.1016/j.neuro.2003.11.001
  20. Suntara A (1931) In The Remedy Pamphlet of Kwao Krua Tuber of Luang Anusarnsuntarakromkarnpiset, Upatipongsa Press, Thailand.
  21. Tung NH, Ding Y, Choi EM, Van Kiem P, Van Minh C, and Kim YH (2009) New anthracene glycosides from Rhodomyrtus tomentosa stimulate osteoblastic differentiation of MC3T3-E1 cells. Arch Pharm Res 32, 515-20. https://doi.org/10.1007/s12272-009-1406-8
  22. Urasopon N, Hamada Y, Asaoka K, Cherdshewasart W, and Malaivijitnond S (2007) Pueraria mirifica, a phytoestrogen-rich herb, prevents bone loss in orchidectomized rats. Maturitas 56, 322-31. https://doi.org/10.1016/j.maturitas.2006.09.007
  23. Virojchaiwong P, Suvithayasiri V, and Itharat A (2011) Comparison of Pueraria mirifica 25 and 50 mg for menopausal symptoms. Arch Gynecol Obstet 284, 411-9. https://doi.org/10.1007/s00404-010-1689-5
  24. Wu HJ and Chan WH (2007) Genistein protects methylglyoxal-induced oxidative DNA damage and cell injury in human mononuclear cells. Toxicol In Vitro 21, 335-42. https://doi.org/10.1016/j.tiv.2006.09.002
  25. Xu GH, Kim YH, Choo SJ, Ryoo IJ, Yoo JK, Ahn JS et al. (2010) Two acetylated megastigmane glycosides from the leaves of Ilex paraguariensis, Arch Pharm Res 33, 369-73. https://doi.org/10.1007/s12272-010-0304-4
  26. Yu LL, Hu WC, Ding G, Li RT, Wei JH, Zou ZM et al. (2011) Gusanlungionosides A-D, potential tyrosinase inhibitors from Arcangelisia gusanlung, J Nat Prod 74, 1009-14. https://doi.org/10.1021/np100900k
  27. Yu Q, Otsuka H, Hirata E, Shinzato T, and Takeda Y (2002) Turpinionosides A-E: Megastigmane glucosides from leaves of Turpinia ternata Nakai. Chem Pharm Bull 50, 640-4. https://doi.org/10.1248/cpb.50.640
  28. Zeng H, Chen Q, and Zhao B (2004) Genistein ameliorates betaamyloid peptide (25-35)-induced hippocampal neuronal apoptosis. Free Radic Biol Med 36, 180-8. https://doi.org/10.1016/j.freeradbiomed.2003.10.018

Cited by

  1. New lignan tyramide, phenolics, megastigmanes, and their glucosides from aerial parts of New Zealand spinach, Tetragonia tetragonoides vol.29, pp.5, 2014, https://doi.org/10.1007/s10068-019-00700-x