DOI QR코드

DOI QR Code

A new suggestion for determining 2D porosities in DEM studies

  • Wang, Zhijie (Institute of Geotechnical Engineering, RWTH Aachen University) ;
  • Ruiken, Axel (Wayss & Freytag Spezialtiefbau GmbH(formerly at RWTH Aachen University)) ;
  • Jacobs, Felix (Institute of Geotechnical Engineering, RWTH Aachen University) ;
  • Ziegler, Martin (Institute of Geotechnical Engineering, RWTH Aachen University)
  • Received : 2014.05.21
  • Accepted : 2014.10.01
  • Published : 2014.12.25

Abstract

In discrete element modeling, 2D software has been widely used in order to gain further insights into the fundamental mechanisms with less computational time. The porosities used in 2D DEM studies should be determined with appropriate approaches based on 3D laboratory porosities. This paper summarizes the main approaches for converting porosities from 3D to 2D for DEM studies and theoretical evaluations show that none of the current approaches can be widely used in dealing with soil mechanical problems. Therefore, a parabolic equation and a criterion have been suggested for the determination of 2D porosities in this paper. Moreover, a case study has been used to validate that the 2D porosity obtained from the above suggestion to be rational with both the realistic contact force distribution in the specimen and the good agreement of the DEM simulation results of direct shear tests with the corresponding experimental data. Therefore, the parabolic equation and the criterion are suggested for the determination of 2D porosities in a wide range of polydisperse particle systems, especially in dealing with soil mechanical problems.

Keywords

Acknowledgement

Supported by : China Scholarship Council

References

  1. Abbireddy, C.O.R. and Clayton, C.R.I. (2010), "Varying initial void ratios for DEM simulations", Geotechnique, 60(6), 497-502. https://doi.org/10.1680/geot.2010.60.6.497
  2. Ai, J., Langston, P.A. and Yu, H.S. (2014), "Discrete element modelling of material non-coaxiality in simple shear flows", Int. J. Numer. Anal. Met., 38(6), 615-635. https://doi.org/10.1002/nag.2230
  3. Bezuijen, A. and van den Berg, P. (2002), Fluid flow in PFC2D (Report No. CO386730/11), Delft, GeoDelft, pp. 13-15.
  4. Bhandari, A. and Han, J. (2010), "Investigation of geotextile-soil interaction under a cyclic vertical load using the discrete element method", Geotext. Geomembranes, 28(1), 33-43. https://doi.org/10.1016/j.geotexmem.2009.09.005
  5. Bhandari, A., Han, J. and Parsons, R.L. (2014), "Two-dimensional DEM analysis of behavior of geogrid-reinforced uniform granular bases under a vertical cyclic load", Acta. Geotech. DOI: 10.1007/s11440-013-0299-3
  6. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  7. Giese, S. (2002), "Numerical simulation of vibrofloatation compaction - Application of dynamic boundary conditions", Proceedings of the 1st International PFC Symposium, Gelsenkirchen, Germany, November.
  8. Hainbuchner, E., Potthoff, S., Konietzky, H. and te Kamp, L. (2002), "Particle based modelling of shear box tests and stability problems for shallow foundations in sand", Proceedings of the 1st International PFC Symposium, Gelsenkirchen, Germany, November.
  9. Han, J., Bhandari, A. and Wang, F. (2012), "DEM analysis of stresses and deformations of geogrid-reinforced embankments over piles", Int. J. Geomech., 12(4), 340-350. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000050
  10. Hartl, J. and Ooi, J.Y. (2008), "Experiments and simulations of direct shear tests: porosity, contact friction and bulk friction", Granul. Matter, 10(4), 263-271. https://doi.org/10.1007/s10035-008-0085-3
  11. Helland, E., Occelli, R. and Tadrist, L. (2005), "Numerical study of cluster and particle rebound effects in a circulating fluidised bed", Chem. Eng. Sci., 60(1), 27-40. https://doi.org/10.1016/j.ces.2004.06.048
  12. Hoomans, B.P.B., Kuipers, J.A.M., Briels, W.J. and van Swaaij, W.P.M. (1996), "Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized bed: a hard-sphere approach", Chem. Eng. Sci., 51(1), 99-118. https://doi.org/10.1016/0009-2509(95)00271-5
  13. Itasca (2008), Particle Flow Code in 2 Dimensions: User's Manual, Version 4.0, Itasca Consulting Group, Inc., Minneapolis, MN, USA.
  14. Jia, L., Chen, M., Zhang, W., Xu, T., Zhou, Y., Hou, B. and Jin, Y. (2013), "Experimental study and numerical modeling of brittle fracture of carbonate rock under uniaxial compression", Mech. Res. Commun., 50, 58-62. https://doi.org/10.1016/j.mechrescom.2013.04.002
  15. Jiang, M.J., Yan, H.B., Zhu, H.H. and Utili, S. (2011), "Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses", Comput. Geotech., 38(1), 14-29. https://doi.org/10.1016/j.compgeo.2010.09.001
  16. Jumikis, A.R. (1962), Soil Mechanics, D. Van Nostrand Company, New York, NY, USA.
  17. Li, X., Yu, H.S. and Li, X.S. (2013), "A virtual experiment technique on the elementary behaviour of granular materials with discrete element method", Int. J. Numer. Anal. Met., 37(1), 75-96. https://doi.org/10.1002/nag.1086
  18. Lin, Y.L., Zhang, M.X., Javadi, A.A., Lu, Y. and Zhang, S.L. (2013), "Experimental and DEM simulation of sandy soil reinforced with H-V inclusions in plane strain tests", Geosynth. Int., 20(3), 162-173. https://doi.org/10.1680/gein.13.00009
  19. Meier, H.A., Schlemmer, M., Wagner, C., Kerren, A., Hagen, H., Kuhl, E. and Steinmann, P. (2008), "Visualization of particle interactions in granular media", IEEE T. Vis. Comput. Gr., 14(5), 1110-1125. https://doi.org/10.1109/TVCG.2008.65
  20. Mohamed, A. and Gutierrez, M. (2010), "Comprehensive study of the effects of rolling resistance on the stress-strain and strain localization behavior of granular materials", Granul. Matter, 12(5), 527-541. https://doi.org/10.1007/s10035-010-0211-x
  21. Nicot, F., Sibille, L., Donze, F. and Darve, F. (2007), "From microscopic to macroscopic second-order work in granular assemblies", Mech. Mater., 39(7), 664-684. https://doi.org/10.1016/j.mechmat.2006.10.003
  22. Nicot, F., Hadda, N., Bourrier, F., Sibille, L. and Darve, F. (2011), "Failure mechanisms in granular media: a discrete element analysis", Granul. Matter, 13(3), 255-260. https://doi.org/10.1007/s10035-010-0242-3
  23. Ouyang, J. and Li, J. (1999), "Particle-motion-resolved discrete model for simulating gas-solid fluidization", Chem. Eng. Sci., 54(13-14), 2077-2083. https://doi.org/10.1016/S0009-2509(98)00413-8
  24. Rahmati, H., Nouri, A., Chan, D. and Vaziri, H. (2014), "Simulation of drilling-induced compaction bands using discrete element method", Int. J. Numer. Anal. Met., 38(1), 37-50. https://doi.org/10.1002/nag.2194
  25. Tran, V.D.H., Meguid, M.A. and Chouinard, L.E. (2013), "A finite-discrete element framework for the 3D modeling of geogrid-soil interaction under pullout loading conditions", Geotext. Geomembr., 37, 1-9. https://doi.org/10.1016/j.geotexmem.2013.01.003
  26. Van Wachem, B.G.M., van der Schaaf, J., Schouten, J.C., Krishna, R. and van den Bleek, C.M. (2001), "Experimental validation of Lagrangian - Eulerian simulations of fluidized beds", Powder Technol., 116(2-3), 155-165. https://doi.org/10.1016/S0032-5910(00)00389-2
  27. Wang, Y.H. and Leung, S.C. (2008), "A particulate-scale investigation of cemented sand behavior", Can. Geotech. J., 45(1), 29-44. https://doi.org/10.1139/T07-070
  28. Wang, Z., Jacobs, F. and Ziegler, M. (2014), "Visualization of load transfer behaviour between geogrid and sand using $PFC^{2D}$", Geotext. Geomembr., 42(2), 83-90. https://doi.org/10.1016/j.geotexmem.2014.01.001
  29. Zeng, Y. (2006), "Microscopic mechanics of soil failure and PFC numerical simulation", Ph.D. Dissertation, Tongji University, Shanghai, China.
  30. Zhang, G. (2007), "Researches on meso-scale mechanism of piping failure by means of model test and PFC numerical simulation", Ph.D. Dissertation, Tongji University, Shanghai, China.
  31. Zhang, M.X., Qiu, C.C., Javadi, A.A., Lu, Y. and Zhang, S.L. (2013), "Experimental and DEM simulation of sandy soil reinforced with H-V inclusions in plane strain tests", Geosynth. Int., 20(4), 238-251. https://doi.org/10.1680/gein.13.00014

Cited by

  1. Experimental and DEM investigation of geogrid–soil interaction under pullout loads vol.44, pp.3, 2016, https://doi.org/10.1016/j.geotexmem.2015.11.001
  2. Characterization and discrete element simulation of grading and shape-dependent behavior of JSC-1A Martian regolith simulant vol.19, pp.4, 2017, https://doi.org/10.1007/s10035-017-0754-1
  3. Critical state shear behavior of the soil-structure interface determined by discrete element modeling vol.35, 2017, https://doi.org/10.1016/j.partic.2017.02.002
  4. Relationship of box counting of fractured rock mass with Hoek-Brown parameters using particle flow simulation vol.9, pp.5, 2015, https://doi.org/10.12989/gae.2015.9.5.619
  5. Numerical simulation of mechanical response of glacial tills under biaxial compression with the DEM 2018, https://doi.org/10.1007/s10064-018-1229-2
  6. Distinct Element Modelling of a Landslide Triggered by the 5.12 Wenchuan Earthquake: A Case Study vol.36, pp.4, 2018, https://doi.org/10.1007/s10706-018-0481-3
  7. Analysis of the thresholds of granular mixtures using the discrete element method vol.12, pp.4, 2014, https://doi.org/10.12989/gae.2017.12.4.639
  8. A review on modelling and monitoring of railway ballast vol.4, pp.3, 2017, https://doi.org/10.12989/smm.2017.4.3.195
  9. 개별요소법을 통한 지반의 포화도와 밀도가 함몰에 미치는 영향 평가 vol.34, pp.8, 2014, https://doi.org/10.7843/kgs.2018.34.8.27
  10. Research on Simulation Analysis Method of Microbial Cemented Sand Based on Discrete Element Method vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/7173414
  11. Macroscopic and microscopic simulation of silo granular flow based on improved multi-element model vol.21, pp.4, 2019, https://doi.org/10.21595/jve.2019.20558
  12. Discrete Element Modeling of Vibration Compaction Effect of the Vibratory Roller in Roundtrips on Gravels vol.49, pp.5, 2020, https://doi.org/10.1520/jte20190910
  13. Effect of underground stress transfer through artificial manipulation of particle size distribution vol.26, pp.2, 2014, https://doi.org/10.12989/gae.2021.26.2.205
  14. Effect of loess particle shape on its performance under biaxial compression vol.68, pp.6, 2014, https://doi.org/10.1080/08120099.2021.1867636
  15. A numerical investigation on the mechanical properties of hydrate-bearing sand using Distinct Element Method vol.96, pp.None, 2014, https://doi.org/10.1016/j.jngse.2021.104328