Acknowledgement
Grant : Development of Key Excavation Solutions for Expandable Urban Underground Space
Supported by : National Research Foundation of Korea (NRF)
References
- Angers, D.A. (1990), "Compression of agricultural soils from Quebec", Soil Tillage Res., 18(4), 357-365. https://doi.org/10.1016/0167-1987(90)90120-3
- Bacic, A., Fincher, G.B. and Stone, B.A. (2009), Chemistry, Biochemistry, and Biology of (1-3)-[beta]-Glucans and Related Polysaccharides, Academic, Amsterdam, Netherland.
- Baveye, P., Vandevivere, P. and de Lozada, D. (1992), "Comment on "Biofilm growth and the related changes in the physical properties of a porous medium: 1, Experimental investigation" by S.W. Taylor and P.R. Jaffe", Water Resour. Res., 28(5), 1481-1482. https://doi.org/10.1029/92WR00246
- Bjerrum, L., Casagrande, A., Peck, R.B. and Skempton, A.W. (1961), "From theory to practice in soil mechanics", Soil Sci., 92(2), 147 p.
- Boulanger, R.W. and Idriss, I.M. (2006), "Liquefaction susceptibility criteria for silts and clays", J. Geotech. Geoenviron. Eng., 132(11), 1413-1426. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1413)
- British Standards, I. (1990a), BS 1377-4 Methods of Test for Soils for Civil Engineering Purposes/Compaction-Related Tests, British Standards Institution, London, UK.
- British Standards, I. (1990b), BS 1377-2 Methods of Test for Soils for Civil Engineering Purposes:Classification Tests, British Standards Institution, London, UK.
- Brown, K.W. and Thomas, J.C. (1987), "A mechanism by which organic liquids increase the hydraulic conductivity of compacted clay materials", Soil Sci. Soc. Am. J., 51(6), 1451-1459. https://doi.org/10.2136/sssaj1987.03615995005100060010x
- Chang, I. and Cho, G.-C. (2010), "A new alternative for estimation of geotechnical engineering parameters in reclaimed clays by using shear wave velocity", ASTM Geotech. Test. J., 33(3), 171-182.
- Chang, I. and Cho, G.C. (2012), "Strengthening of Korean residual soil with beta-1,3/1,6-glucan biopolymer", Construct. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030
- Chenu, C., Le Bissonnais, Y. and Arrouays, D. (2000), "Organic matter influence on clay wettability and soil aggregate stability", Soil Sci. Soc. Am. J., 64(4), 1479-1486. https://doi.org/10.2136/sssaj2000.6441479x
- Coutinho, R.Q. and Lacerda, W.A. (1987), "Characterization and consolidation of Juturnaiba organic clays", Proceedings of the International Symposium on Geotechnical Engineering of Soft Soils, Mexico,Volume 1, 17-24.
- Day, S.R., O'Hannesin, S.F. and Marsden, L. (1999), "Geotechnical techniques for the construction of reactive barriers", J. Hazard. Mater., 67(3), 285-297. https://doi.org/10.1016/S0304-3894(99)00044-8
- DeJong, J.T., Mortensen, B.M., Martinez, B.C. and Nelson, D.C. (2010), "Bio-mediated soil improvement", Ecol. Eng., 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029
- Feng, T.-W. (2000), "Fall-cone penetration and water content relationship of clays", Geotechnique, 50(2), 181-187. https://doi.org/10.1680/geot.2000.50.2.181
- Hartge, K.H. and Stewart, B.A. (1995), Soil Structure: Its Development and Function, CRC Lewis Publishers, Boca Raton, FL, USA; London, UK.
- Khayat, K.H. and Yahia, A. (1997), "Effect of welan gum high-range water reducer combinations on rheology of cement grout", Aci. Mater. J., 94(5), 365-372.
- Lazaridou, A., Biliaderis, C.G. and Izydorczyk, M.S. (2003), "Molecular size effects on rheological properties of oat beta-glucans in solution and gels", Food Hydrocolloids, 17(5), 693-712. https://doi.org/10.1016/S0268-005X(03)00036-5
- Lee, S.B., Jeon, H.W., Lee, Y.W., Lee, Y.M., Song, K.W., Park, M.H., Nam, Y.S. and Ahn, H.C. (2003), "Bio-artificial skin composed of gelatin and (1 --> 3), (1 --> 6)-beta-glucan", Biomater., 24(14), 2503-2511. https://doi.org/10.1016/S0142-9612(03)00003-6
- Mitchell, J.K. and Santamarina, J.C. (2005), "Biological considerations in geotechnical engineering", J. Geotech. Geoenviron. Eng., 131(10), 1222-1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222)
- Nagai, T., Kojima, T. and Miura, T. (1999), "Application of high-strength/superworkable concrete to thin-wall prestressed concrete products", Magazine of Concrete Research, 51(3), 153-162. https://doi.org/10.1680/macr.1999.51.3.153
- Nason, D. (1987), "The compaction of partially dried lucerne", J. Agr. Eng. Res., 37(1), 73-80. https://doi.org/10.1016/0021-8634(87)90132-6
- Nierop, K.G.J., van Lagen, B. and Buurman, P. (2001), "Composition of plant tissues and soil organic matter in the first stages of a vegetation succession", Geoderma, 100(1-2), 1-24. https://doi.org/10.1016/S0016-7061(00)00078-1
- Nugent, R.A., Zhang, G.P. and Gambrell, R.P. (2009), "Effect of exopolymers an the liquid limit of clays and its engineering implications", Transport. Res. Rec., 2101, 34-43. https://doi.org/10.3141/2101-05
- O'Sullivan, M.F. (1992), "Uniaxial compaction effects on soil physical properties in relation to soil type and cultivation", Soil Tillage Res., 24(3), 257-269. https://doi.org/10.1016/0167-1987(92)90091-O
- Ooi, V.E.C. and Liu, F. (2000), "Immunomodulation and anti-cancer activity of polysaccharide-protein complexes", Current Medicinal Chem., 7(7), 715-729. https://doi.org/10.2174/0929867003374705
- Orts, W.J., Roa-Espinosa, A., Sojka, R.E., Glenn, G.M., Imam, S.H., Erlacher, K. and Pedersen, J.S. (2007), "Use of synthetic polymers and biopolymers for soil stabilization in agricultural, construction, and military applications", J. Mater. Civil Eng., 19(1), 58-66. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(58)
- Park, H.J., Weller, C.L., Vergano, P.J. and Testin, R.F. (1993), "Permeability and mechanical-properties of cellulose-based edible films", J. Food Sci., 58(6), 1361-1364. https://doi.org/10.1111/j.1365-2621.1993.tb06183.x
- Paul, E.A. (2007), Soil Microbiology, Ecology, and Biochemistry, Academic, Amsterdam, Netherland; London, UK.
- Piccolo, A. and Mbagwu, J.S.C. (1999), "Role of hydrophobic components of soil organic matter in soil aggregate stability", Soil Sci. Soc. Am. J., 63(6), 1801-1810. https://doi.org/10.2136/sssaj1999.6361801x
- Santamarina, J.C., Klein, K.A. and Fam, M.A. (2001), Soils and Waves, Wiley, Chichester, UK.
- Sharma, B. and Bora, P.K. (2003), "Plastic limit, liquid limit and undrained shear strength of soileappraisal", J. Geotech. Geoenviron. Eng., 129(8), 774-777. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(774)
- Shin, H.D., Son, M.K., Park, B.R., Son, C.W. and Jang, H.J. (2004), "Composition containing Beta-glucan for prevention and treatment of osteoporosis", (D.D. Mckay Ed.), Glucan Corporation, USA, 6 p.
- Shin, H.D., Yang, K.J., Park, B.R., Son, C.W., Jang, H.J. and Ku, S.K. (2007), "Antiosteoporotic effect of Polycan, beta-glucan from Aureobasidium, in ovariectomized osteoporotic mice", Nutrition, 23(11-12), 853-860. https://doi.org/10.1016/j.nut.2007.08.011
- Skendi, A., Biliaderis, C.G., Lazaridou, A. and Izydorczyk, M.S. (2003), "Structure and rheological properties of water soluble beta-glucans from oat cultivars of Avena sativa and Avena bysantina", J. Cereal Sci., 38(1), 15-31. https://doi.org/10.1016/S0733-5210(02)00137-6
- Soane, B.D. (1990), "The role of organic-matter in soil compactibility - A review of some practical aspects", Soil Tillage Res., 16(1-2), 179-201. https://doi.org/10.1016/0167-1987(90)90029-D
- Soga, K. and Jefferis, S.A. (2008), "Contributions to geotechnique 1948-2008: Soil science and interdisciplinary aspects of geotechnical engineering", Geotechnique, 58(5), 441-448. https://doi.org/10.1680/geot.2008.58.5.441
- Sposito, G. (1989), The Chemistry of Soils, Oxford University Press, UK.
- Sullivan, L.A. (1990), "Soil organic matter, air encapsulation and water-stable aggregation", J. Soil Sci., 41(3), 529-534. https://doi.org/10.1111/j.1365-2389.1990.tb00084.x
- Van de Velde, K. and Kiekens, P. (2002), "Biopolymers: Overview of several properties and consequences on their applications", Polym. Test., 21(4), 433-442. https://doi.org/10.1016/S0142-9418(01)00107-6
- Yang, K.H., Hwang, H.Z., Kim, S.Y. and Song, J.K. (2007), "Development of a cementless mortar using hwangtoh binder", Build. Environ., 42(10), 3717-3725. https://doi.org/10.1016/j.buildenv.2006.09.006
- Zhang, H.Q. (1994), "Organic-matter incorporation affects mechanical-properties of soil aggregates", Soil Tillage Res., 31(2-3), 263-275. https://doi.org/10.1016/0167-1987(94)90085-X
Cited by
- Geotechnical engineering behaviors of gellan gum biopolymer treated sand vol.53, pp.10, 2016, https://doi.org/10.1139/cgj-2015-0475
- Application of Microbial Biopolymers as an Alternative Construction Binder for Earth Buildings in Underdeveloped Countries vol.2015, 2015, https://doi.org/10.1155/2015/326745
- Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering vol.8, pp.3, 2016, https://doi.org/10.3390/su8030251
- Investigation of soil stabilization using chitosan biopolymer vol.170, 2018, https://doi.org/10.1016/j.jclepro.2017.09.256
- Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying vol.143, 2017, https://doi.org/10.1016/j.conbuildmat.2017.02.061
- Bovine casein as a new soil strengthening binder from diary wastes vol.160, 2018, https://doi.org/10.1016/j.conbuildmat.2017.11.009
- Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay pp.1861-1133, 2018, https://doi.org/10.1007/s11440-018-0641-x
- Evaluation of the grouting in the sandy ground using bio injection material vol.12, pp.5, 2017, https://doi.org/10.12989/gae.2017.12.5.739
- ε-polylysine biopolymer for coagulation of clay suspensions vol.12, pp.5, 2014, https://doi.org/10.12989/gae.2017.12.5.753
- Strength and durability characteristics of biopolymer-treated desert sand vol.12, pp.5, 2017, https://doi.org/10.12989/gae.2017.12.5.785
- Application of magnesium to improve uniform distribution of precipitated minerals in 1-m column specimens vol.12, pp.5, 2017, https://doi.org/10.12989/gae.2017.12.5.803
- Dynamic properties of gel-type biopolymer-treated sands evaluated by Resonant Column (RC) Tests vol.12, pp.5, 2017, https://doi.org/10.12989/gae.2017.12.5.815
- Geotechnical shear behavior of Xanthan Gum biopolymer treated sand from direct shear testing vol.12, pp.5, 2014, https://doi.org/10.12989/gae.2017.12.5.831
- In situ viscoelastic properties of insoluble and porous polysaccharide biopolymer dextran produced by Leuconostoc mesenteroides using particle-tracking microrheology vol.12, pp.5, 2014, https://doi.org/10.12989/gae.2017.12.5.849
- Measuring elastic modulus of bacterial biofilms in a liquid phase using atomic force microscopy vol.12, pp.5, 2014, https://doi.org/10.12989/gae.2017.12.5.863
- Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands vol.17, pp.5, 2019, https://doi.org/10.12989/gae.2019.17.5.445
- Geotechnical engineering behavior of biopolymer-treated soft marine soil vol.17, pp.5, 2014, https://doi.org/10.12989/gae.2019.17.5.453
- Mechanical behaviour of biocemented sand under triaxial consolidated undrained or constant shear drained conditions vol.17, pp.5, 2014, https://doi.org/10.12989/gae.2019.17.5.497
- Effect of palm oil on the basic geotechnical properties of kaolin vol.18, pp.2, 2014, https://doi.org/10.12989/gae.2019.18.2.179
- Soil consistency and interparticle characteristics of xanthan gum biopolymer-containing soils with pore-fluid variation vol.56, pp.8, 2014, https://doi.org/10.1139/cgj-2018-0254
- Geotechnical behaviour of guar gum-treated soil vol.59, pp.6, 2014, https://doi.org/10.1016/j.sandf.2019.11.012
- Geo-engineering properties of expansive soil treated with xanthan gum biopolymer vol.15, pp.2, 2014, https://doi.org/10.1080/17486025.2019.1632495
- Performance evaluation of β-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement vol.21, pp.5, 2020, https://doi.org/10.12989/gae.2020.21.5.413
- Control and Stabilization of Fugitive Dust: Using Eco-Friendly and Sustainable Materials vol.20, pp.9, 2014, https://doi.org/10.1061/(asce)gm.1943-5622.0001762
- Fall-cone testing of different size/shape sands treated with a biopolymer vol.22, pp.5, 2014, https://doi.org/10.12989/gae.2020.22.5.441
- Biopolymers as a sustainable solution for the enhancement of soil mechanical properties vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-019-57135-x
- The Usability of Clay/Pumice Mixtures Modified with Biopolymer as an Impermeable Liner vol.25, pp.1, 2014, https://doi.org/10.1007/s12205-020-1053-7
- State of the Art Review of Emerging and Biogeotechnical Methods for Liquefaction Mitigation in Sands vol.25, pp.1, 2021, https://doi.org/10.1061/(asce)hz.2153-5515.0000557
- Surface erosion behavior of biopolymer-treated river sand vol.25, pp.1, 2014, https://doi.org/10.12989/gae.2021.25.1.049
- Evaluation of Dynamic Properties of Sodium-Alginate-Reinforced Soil Using A Resonant-Column Test vol.14, pp.11, 2014, https://doi.org/10.3390/ma14112743
- Biopolymers as Green Binders for Soil Improvement in Geotechnical Applications: A Review vol.11, pp.7, 2021, https://doi.org/10.3390/geosciences11070291
- Experimental investigation on the shear strength and deformation behaviour of xanthan gum and guar gum treated clayey sand vol.26, pp.2, 2014, https://doi.org/10.12989/gae.2021.26.2.101
- Site application of biopolymer-based soil treatment (BPST) for slope surface protection: in-situ wet-spraying method and strengthening effect verification vol.307, pp.None, 2021, https://doi.org/10.1016/j.conbuildmat.2021.124983
- Efficient stabilization of soil, sand, and clay by a polymer network of biomass-derived chitosan and carboxymethyl cellulose vol.10, pp.1, 2014, https://doi.org/10.1016/j.jece.2021.107084