DOI QR코드

DOI QR Code

치료계획시스템에서 전산화단층촬영과 자기공명영상의 영상융합 재현성 및 선량평가

CT and MRI Image Fusion Reproducibility and Dose Assessment on Treatment Planning System

  • 최재혁 (국립암센터 양성자치료센터) ;
  • 박철수 (한림성심대학교 방사선학과) ;
  • 서정민 (한양대학교 원자력공학과, 대원대학교 방사선학과) ;
  • 조재환 (한림국제대학원대학교 국제방사선학과) ;
  • 최천웅 (강동경희대학교병원 호흡기내과)
  • Choi, Jae-Hyock (Department of Proton Therapy Center, National Cancer Center) ;
  • Park, Cheol-Soo (Department of Radiological Science, Hallym Polytechnic University) ;
  • Seo, Jeong-Min (Department of Nuclear Engineering, Hanyang University, Department of Radiological Science, Daewon University College) ;
  • Cho, Jae-Hwan (Department of International Radiological Science, Hallym University of Graduate Studies) ;
  • Choi, Cheon-Woong (Department of Respiratory and Critical Care Medicine, Kyung Hee University Hospital at Gangdong)
  • 투고 : 2014.12.08
  • 심사 : 2014.12.17
  • 발행 : 2014.12.31

초록

본 연구의 목적은 치료계획 시 전산화 단층촬영영상과 자기공명영상과의 융합을 통해 영상의 재현성 및 유용성을 평가하고 획득한 영상에서 타겟 선량을 비교, 분석하고자 자체개발한 팬톰을 사용하여 수행하였다. 전산화단층촬영을 한 팬톰의 영상과 각기 다른 자장의 세기로 촬영한 팬톰의 자기공명영상에서 팬톰 내에 존재하는 작은 홀의 크기 및 용적의 재현성을 비교하고, 임의의 타겟에서 선량 변화를 비교, 분석하였다.

The purpose of this study is to evaluate the reproducibility and usefulness of an image through the fusion of the computed tomography image and the magnetic resonance image by using a self-produced phantom when planning the treatment, and also to compare and analyze the target dose on the acquired image. The size of small hole and the reproducibility of capacity existed in the phantom on the image of the phantom obtained by the computed tomography and the magnetic resonance image of the phantom scanning with different intensity of magnetic field are compared, and the change of dose in the random target is compared and analyzed.

키워드

참고문헌

  1. V. S. Khoo, E. J. Adams, F. Saran, J. L. Bedford, J. R. Perks, and A. P. Warrington, Int. J. Radiat. Oncol. Biol. Phys. 46, 1309 (2000). https://doi.org/10.1016/S0360-3016(99)00541-6
  2. J. N. Song, Y. J. Kim, and S. I. Hong, J. Kor. Soc. Radiol. 6, 365 (2012). https://doi.org/10.7742/jksr.2012.6.5.365
  3. M. Van Herk and H. Kooy, Med. Phys. 21, 1163 (1994). https://doi.org/10.1118/1.597344
  4. M. Roach 3rd, P. Faillace-Akazawa, C. Malfatti, J. Holland, and H. Hricak, Int. J. Radiat. Oncol. Biol. Phys. 35, 1011 (1996).
  5. Jochem W. H. Wolthaus and Jan-Jakob Sonke, Int. J. Rad. Oncol. Biol. Phys. 70, 1229 (2007).
  6. Yang Wensha, Radiat. Oncol. 9, 11 (2014). https://doi.org/10.1186/1748-717X-9-11
  7. T. D. Cox, K. S. White, and E. L. Effmann, Pedia. Radiol. 25, 347 (1995). https://doi.org/10.1007/BF02021699
  8. S. A. Leibel, G. J. Kutcher, R. Mohan, L. B. Harrison, J. G. Armstrong, and M. J. Zelefsky, Radiat. Oncol. 2, 274 (1999).
  9. Wang Ge, IEEE Transactions on Medical Imaging. 15, 657 (1996). https://doi.org/10.1109/42.538943
  10. Tsukihara M and Yoshiyuki N, Phys. Med. Biol. 58, 135 (2013). https://doi.org/10.1088/0031-9155/58/9/N135
  11. S. Y. Park, H. J. Park, and H. Kim, J. Kor. Radiol. Soc. 44, 201 (2001). https://doi.org/10.3348/jkrs.2001.44.2.201
  12. M. Van Herk and H. Kooy, Med. Phys. 21, 1163 (1994). https://doi.org/10.1118/1.597344
  13. A. Matsuoka, M. Minato, and M. Harada, Radiat. Med. 26, 15 (2008). https://doi.org/10.1007/s11604-007-0187-6
  14. A. C. Koong, E. Christofferson, Q. T. Le, K. A. Goodman, A. Ho, T. Kuo, J. M. Ford, G. A. Fisher, R. Greco, J. Norton, and G. P. Yang, Int. J. Radiat. Oncol. Biol. Phys. 63, 320 (2005). https://doi.org/10.1016/j.ijrobp.2005.07.002
  15. N. Lee, P. Xia, J. M. Quivey, K. Sultanem, I. Poon, C. Akazawa, P. Akazawa, V. Weinberg, and Fu K Karen, Int. J. Radiat. Oncol. Biol. Phys. 53, 12 (2002). https://doi.org/10.1016/S0360-3016(02)02724-4
  16. K. Higashi, Y. Ueda, and H. Seki, J. Nucl. Med. 39, 1016 (1998).
  17. L. B. Marks, D. P. Spencer, and G. W. Sherouse, Int. J. Radiat. Oncol. Biol. Phys. 33, 65 (1995). https://doi.org/10.1016/0360-3016(95)00091-C
  18. J. M. Seo, M. H. Park, and J. G. Sim, J. Kor. Soc. Radiol. 5, 179 (2011). https://doi.org/10.7742/jksr.2011.5.4.179