DOI QR코드

DOI QR Code

Effects of Different Dietary Cadmium Levels on Growth and Tissue Cadmium Content in Juvenile Parrotfish, Oplegnathus fasciatus

  • Okorie, Okorie E. (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Bae, Jun Young (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Lee, Jun-Ho (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Lee, Seunghyung (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Park, Gun-Hyun (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Mohseni, Mahmoud (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Bai, Sungchul C. (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University)
  • Received : 2011.07.12
  • Accepted : 2011.11.07
  • Published : 2014.01.01

Abstract

This feeding trial was carried out to evaluate the effects of different dietary cadmium levels on growth and tissue cadmium content in juvenile parrotfish, Oplegnathus fasciatus, using cadmium chloride ($CdCl_2$) as the cadmium source. Fifteen fish averaging $5.5{\pm}0.06$ g (mean${\pm}$SD) were randomly distributed into each of twenty one rectangular fiber tanks of 30 L capacity. Each tank was then randomly assigned to one of three replicates of seven diets containing 0.30 ($C_0$), 21.0 ($C_{21}$), 40.7 ($C_{41}$), 83.5 ($C_{83}$), 162 ($C_{162}$), 1,387 ($C_{1,387}$) and 2,743 ($C_{2,743}$) mg cadmium/kg diet. At the end of sixteen weeks of feeding trial, weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) of fish fed $C_{21}$ were significantly higher than those of fish fed $C_{83}$, $C_{162}$, $C_{1,387}$ and $C_{2,743}$ (p<0.05). Weight gain, SGR and FE of fish fed $C_0$, $C_{21}$ and $C_{41}$ were significantly higher than those of fish fed $C_{162}$, $C_{1,387}$ and $C_{2,743}$. Protein efficiency ratio of fish fed $C_0$, $C_{21}$ and $C_{41}$ were significantly higher than those of fish fed $C_{1,387}$ and $C_{2,743}$. Average survival of fish fed $C_0$, $C_{21}$, $C_{41}$ and $C_{162}$ were significantly higher than that of fish fed $C_{2,743}$. Tissue cadmium concentrations increased with cadmium content of diets. Cadmium accumulated the most in liver, followed by gill and then muscle. Muscle, gill and liver cadmium concentrations of fish fed $C_0$, $C_{21}$, $C_{41}$ and $C_{83}$ were significantly lower than those of fish fed $C_{162}$, $C_{1,387}$ and $C_{2,743}$. Based on the ANOVA results of growth performance and tissue cadmium concentrations the safe dietary cadmium level could be lower than 40.7 mg Cd/kg diet while the toxic level could be higher than 162 mg Cd/kg diet.

Keywords

References

  1. AOAC. 1995. Official methods of analysis. 16th edn. Association of Official Analytical Chemists, Arlington, Virginia, USA.
  2. Baldisserotto, B., C. Kamunde, A. Matsuo, and C. M. Wood. 2004. A protective effect of dietary calcium against acute waterborne cadmium uptake in rainbow trout. Aquat. Toxicol. 67:57-73. https://doi.org/10.1016/j.aquatox.2003.12.004
  3. Baldisserotto, B., M. J. Chowdhury, and C. M. Wood. 2005. Effects of dietary calcium and cadmium on cadmium accumulation, calcium and cadmium uptake from water, and their interactions in juvenile rainbow trout. Aquat. Toxicol. 72:99-117. https://doi.org/10.1016/j.aquatox.2004.11.019
  4. Berntssen, M. H. G., O. O. Aspholm, K. Hylland, S. E. Wendelaar Bonga, and A. K. Lundebye. 2001. Tissue metallothionein, apoptosis and cell proliferation responses in Atlantic salmon (Salmo salar L.) parr fed elevated dietary cadmium. Comp. Biochem. Physiol. 128C:299-310.
  5. Bokori, J. and S. Fekete. 1995. Complex study of the physiological role of cadmium. I. Cadmium and its physiological role. Acta Vet. Hung. 43:3-43.
  6. Chowdhury, M. J. and C. M. Wood. 2007. Renal function in the freshwater rainbow trout after dietary cadmium acclimation and waterborne cadmium challenge. Comp. Biochem. Physiol. 145C:321-332.
  7. Chowdhury, M. J., E. F. Pane, and C. M. Wood. 2004. Physiological effect of dietary cadmium acclimation and waterborne cadmium challenge in rainbow trout: respiratory, ionoregulatory, and stress parameters. Comp. Biochem. Physiol. 139C:163-173.
  8. Cinier, C. C., M. Petit-Ramel, R. Faure, D. Garin, and Y. Bouvet. 1999. Kinetics of cadmium accumulation and elimination in carp, Cyprinus carpio, tissues. Comp. Biochem. Physiol. 122C:345- 352.
  9. Crespo, S., G. Nonnotte, D. A. Colin, C. Leray, L. Nonnotte, and A. Aubre. 1986. Morphological and functional alterations induced in trout intestine by dietary cadmium and lead. J. Fish Biol. 28:69-80. https://doi.org/10.1111/j.1095-8649.1986.tb05143.x
  10. Franklin, N. M., C. N. Glover, J. A. Nicol, and C. M. Wood. 2005. Calcium/cadmium interactions at uptake surfaces in rainbow trout: waterborne versus dietary routes of exposure. Environ. Toxicol. Chem. 24:2954-2964. https://doi.org/10.1897/05-007R.1
  11. Galar Burgos, M. and P. S. Rainbow. 2001. Availability of cadmium and zinc from sewage sludge to the flounder, Platichthys flesus, via a marine food chain. Mar. Environ. Res. 51:417-439. https://doi.org/10.1016/S0141-1136(00)00249-X
  12. Giles, M. A. 1988. Accumulation of cadmium by rainbow trout, Salmo gairdneri, during extended exposure. Can. J. Fish. Aquat. Sci. 45:1045-1053. https://doi.org/10.1139/f88-128
  13. Goering, P. L., M. P. Waalkes, and C. D. Klaassen. 1995. Toxicology of cadmium. In: Toxicology of Metals: Biochemical Aspects (Ed. R. A. Goyer and G. M. Cherian). Springer, New York, USA. pp. 189-214.
  14. Goyer, R. A., C. R. Miller, S. Y. Zhu, and W. Victery. 1989. Nonmethallothionein-bound cadmium in the pathogenesis of cadmium nephrotoxicity in the rat. Toxicol. Appl. Pharmacol. 101:232-244. https://doi.org/10.1016/0041-008X(89)90272-X
  15. Groten, J. P., E. J. Sinkeldam, J. B. Luten, and P. J. van Bladeren. 1990. Comparison of the toxicity of inorganic and liver-incorporated cadmium: a 4-wk feeding study in rats. Food Chem. Toxicol. 28:435-441. https://doi.org/10.1016/0278-6915(90)90090-A
  16. Groten, J. P., J. H. Koeman, J. H. J. van Nesselrooij, J. B. Luten, J. M. Fentener van Vlissingen, W. S. Stenhuis, and P. J. van Bladeren. 1994. Comparison of renal toxicity after long-term oral administration of cadmium chloride and cadmium-metallothionein in rats. Fundam. Appl. Toxicol. 23:544-552. https://doi.org/10.1006/faat.1994.1139
  17. Handy, R. D. 1993. The effect of acute exposure to dietary Cd and Cu on organ toxicant concentrations in rainbow trout. Aquat. Toxicol. 24:1-14.
  18. Harrison, S. E. and J. F. Klaverkamp. 1989. Uptake, elimination and tissue distribution of dietary and aqueous cadmium by rainbow trout (Salmo gairdneri Richardson) and lake whitefish (Coregonus clupeaformis Mitchill). Environ. Toxicol. Chem. 8:87-97. https://doi.org/10.1897/1552-8618(1989)8[87:UEATDO]2.0.CO;2
  19. Hinkle, P. M., P. A. Kinsella, and K. C. Osterhoudt. 1987. Cadmium uptake and toxicity via voltage-sensitive calcium channels. J. Biol. Chem. 262:16333-16337.
  20. Hollis, L., J. C. McGeer, D. G. McDonald, and C. M. Wood. 1999. Cadmium accumulation, gill Cd binding, acclimation, and physiological effects during long term sublethal Cd exposure in rainbow trout. Aquat. Toxicol. 46:101-109. https://doi.org/10.1016/S0166-445X(98)00118-0
  21. Hollis, L., C. Hogstrand, and C. M. Wood. 2001. Tissue-specific cadmium accumulation, metallothionein induction, and tissue zinc and copper levels during chronic sublethal cadmium exposure in juvenile rainbow trout. Arch. Environ. Contam. Toxicol. 41:468-474. https://doi.org/10.1007/s002440010273
  22. IPCS (International Programme on Chemical Safety). 1992. Environmental Health Criteria 134: Cadmium. Geneva: World Health Organization.
  23. Kay, J., D. G. Thomas, M. W. Brown, A. Cryer, D. Shurben, J. F. Solbe, and J. S. Garvey. 1986. Cadmium accumulation and protein binding patterns in tissues of the rainbow trout, Salmo gairdneri. Environ. Health Perspect. 65:133-139.
  24. Kim, S. G., K. H. Eom, S. S. Kim, H. G. Jin, and J. C. Kang. 2006. Kinetics of Cd accumulation and elimination in tissues of juvenile rockfish (Sebastes schlegeli) exposed to dietary Cd. Mar. Environ. Res. 62:327-340. https://doi.org/10.1016/j.marenvres.2006.05.001
  25. Kraal, M. H., M. H. S. Kraak, C. J. De Groot, and C. Davids. 1995. Uptake and tissue distribution of dietary and aqueous cadmium by carp (Cyprinus carpio). Ecotoxicol. Environ. Saf. 31:179- 183. https://doi.org/10.1006/eesa.1995.1060
  26. Kumada, H., S. Kimura, and M. Yokote. 1980. Accumulation and biological effects of cadmium in rainbow trout. Bull. Japan Soc. Fish. Oceanogr. 46:97-103. https://doi.org/10.2331/suisan.46.97
  27. Lundebye, A. K., M. H. G. Berntssena, S. E. Wendelaar Bongab, and A. Maagea. 1999. Biochemical and physiological responses in Atlantic salmon (Salmo salar) following dietary exposure to copper and cadmium. Mar. Pollut. Bull. 39:137-144. https://doi.org/10.1016/S0025-326X(98)00208-2
  28. McGeer, J. C., C. Szebedinszky, D. G. McDonald, and C. M. Wood. 2000. Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout: 1. Iono-regulatory disturbance and metabolic costs. Aquat. Toxicol. 50:231-243. https://doi.org/10.1016/S0166-445X(99)00105-8
  29. Ng, T. Y. T. and C. M. Wood. 2008. Trophic transfer and dietary toxicity of Cd from the oligochaete to the rainbow trout. Aquat. Toxicol. 87:47-59. https://doi.org/10.1016/j.aquatox.2008.01.003
  30. Nogami, E. M., C. M. Kimura, C. Rodrigues, A. R. Malagutti, E. Lenzi, and J. Nozaki. 2000. Effects of dietary cadmium and its bioconcentration in tilapia Oreochromis niloticus. Ecotoxicol. Environ. Saf. 45:291-295. https://doi.org/10.1006/eesa.1999.1858
  31. NRC (National Research Council). 2005. Mineral tolerance of animals. 2nd rev. ed. The National Academies Press. Washington, DC, USA. p. 86.
  32. Pinot, F., S. E. Kreps, M. Bachelet, P. Hainaut, M. Bakonyi, and B. S. Polla. 2000. Cadmium in the environment: sources, mechanisms of biotoxicity, and biomarkers. Rev. Environ. Health 15:299-323.
  33. Pratap, H. B., H. Fu, R. A. C. Lock, and S. E. Wendelaar-Bonga. 1989. Effects of waterborne and dietary cadmium on plasma ions of the teleost Oreochromis mossambicus in relation to water calcium levels. Arch. Environ. Contam. Toxicol. 18:568-575. https://doi.org/10.1007/BF01055024
  34. Robohm, R. A. 1986. Paradoxical effect of cadmium exposure on antibody responses in two fish species: inhibition in cunners (Tautoglabrus adspersus) and enhancement in striped bass (Morone saxatilis). Vet. Immunol. Immunopathol. 12:251-262. https://doi.org/10.1016/0165-2427(86)90129-7
  35. Roesijadi, G. and M. E. Unger. 1993. Cadmium uptake in gills of the mollusk Crassostrea virginica and inhibition by calcium channel blockers. Aquat. Toxicol. 24:195-206. https://doi.org/10.1016/0166-445X(93)90071-8
  36. Roesijadi, G. and W. E. Robinson. 1994. Metal regulation in aquatic animals: Mechanisms of uptake, accumulation and release In: Aquatic Toxicology, Molecular, Biochemical and Cellular Perspectives (Ed. D. C. Malins and G. K. Ostrander). CRC Press, Boca Raton, Florida. pp. 387-420.
  37. Swiergosz-Kowalewska, R. 2001. Cadmium distribution and toxicity in tissues of small rodents. Microsc. Res. Tech. 55:208-222. https://doi.org/10.1002/jemt.1171
  38. Szczerbik, P., T. Mikolajczyk, M. Sokolowska-Mikołajczyk, M. Socha, J. Chyb, and P. Epler. 2006. Influence of long-term exposure to dietary cadmium on growth, maturation and reproduction of goldfish (subspecies: Prussian carp Carassius auratus gibelio B.) Aquat. Toxicol. 77:126-135. https://doi.org/10.1016/j.aquatox.2005.11.005
  39. Szebedinszsky, C., J. C. McGeer, D. G. McDonald, and C. M. Wood. 2001. Effects of chronic Cd exposure via the diet or water on internal organspecific distribution and subsequent gill Cd uptake kinetics in juvenile rainbow trout. Environ. Toxicol. Chem. 20:597-607. https://doi.org/10.1002/etc.5620200320
  40. Von Zglinicki, T., E. Edwall, E. Ostlund, B. Lind, M. Nordberg, N. R. Ringertz, and J. Wroblewski. 1992. Very low cadmium concentrations stimulate DNA synthesis and cell growth. J. Cell Sci. 103:1073-1081.

Cited by

  1. The role of some feed additives in fish fed on diets contaminated with cadmium vol.24, pp.30, 2017, https://doi.org/10.1007/s11356-017-9986-1
  2. Protective effect of melatonin on cadmium-induced changes in some maturation and reproductive parameters of female Prussian carp (Carassius gibelio B.) vol.25, pp.10, 2018, https://doi.org/10.1007/s11356-018-1308-8
  3. Effects of antioxidant enzymes and bioaccumulation in eels (Anguilla japonica) by acute exposure of waterborne cadmium vol.23, pp.8, 2014, https://doi.org/10.1186/s41240-020-00166-7
  4. Egg case concentrate of Mantis religiosa abrogates the accumulation of cadmium in muscular and bone tissues of African catfish via activation of nitric oxide and myeloperoxidase activity vol.45, pp.3, 2021, https://doi.org/10.1111/jfbc.13287
  5. Dietary Supplementation of humic acid in the Feed of juvenile asian seabass, Lates calcarifer to counteract possible negative effects of Cadmium Accumulation on Growth and Fish Well‐being when G vol.52, pp.6, 2014, https://doi.org/10.1111/are.15104
  6. The negative effects of dietary cadmium on antioxidant capacity, immunity and intestine morphology of Macrobrachium nipponense and the alleviation effects of lipoic acid vol.27, pp.4, 2021, https://doi.org/10.1111/anu.13262