DOI QR코드

DOI QR Code

Design Criterion for the Size of Micro-scale Pt-catalytic Combustor in Respect of Heat Release Rate

열 방출률에 대한 마이크로 백금 촉매 연소기의 치수 설계 기준

  • Received : 2014.12.04
  • Accepted : 2014.12.11
  • Published : 2014.12.30

Abstract

Design criterion for the size of micro Pt-catalytic combustor is investigated in terms of heat release rate. One-dimensional plug flow model is applied to determine the surface reaction constants using the experimental data at stoichiometric butane-air mixture. With these reaction constants, the mass fraction of butane and heat release rate predicted by the plug flow model are in good agreement with the experimental data at the combustor exit. The relationship between the size of micro catalytic combustor and mixture flowrate is introduced in the form of product of two terms-the effect of fuel conversion efficiency, and the effect of chemical reaction rate and mass transfer rate.

Keywords

References

  1. Y. Ju, K. Maruta, Microscale combustion: Technology development and fundamental research, Prog. Energy Combust. Sci., 37 (2011) 669-715.
  2. D. C. Walther, J. Ahn, Advances and challenges in the development of power-generation systems at small scales, Prog. Energy Combust. Sci., 37 (2011) 583-610. https://doi.org/10.1016/j.pecs.2010.12.002
  3. A. C. Fernandez-Pello, A. P. Pisano, K. Fu, D. Walther, A. Knobloch, F. Martinez, M. Senesky, D. Jones, C. Stoldt, J. Heppner, MEMS rotary engine power system, International Workshop on Power MEMS, 2002, 28-31.
  4. S. Tanaka, K. Chang, K. Min, D. Satoh, K. Yoshida, M. Esashi, MEMS-based components of a miniature fuel cell/fuel reformer system, Chem. Eng. J., 101 (2004) 143-149. https://doi.org/10.1016/j.cej.2004.01.017
  5. S. Schaevitz, A. J. Franz, K. F. Jensen, M. A. Schmidt, A combustion-based MEMS thermoelectric power generator, The 11th International Conference on Solid-State Sensor and Actuators, 2001, 30-33.
  6. W. M. Yang, S. K. Chou, C. Shu, Z. W. Li, H. Xue, Development of microthermophotovoltaic system, Appl. Phys. Lett., 81 (2002) 5255-5257. https://doi.org/10.1063/1.1533847
  7. M. Chen, J. Buckmaster, Modeling of combustion and heat transfer in 'Swiss roll' micro scale combustors, Combust. Theory Modelling, 8 (2004) 701-720. https://doi.org/10.1088/1364-7830/8/4/003
  8. C. M. Miesse, R. I. Masel, C. D. Jensen, M. A. Shannon, M. Short, Submillimeter-scale combustion, AIChE J., 50(12) (2004) 3206-3214. https://doi.org/10.1002/aic.10271
  9. K. Kim, D. Lee, S. Kwon, Effects of thermal and chemical surface-flame interaction on flame quenching, Combust. Flame, 146 (2006) 19-28. https://doi.org/10.1016/j.combustflame.2006.04.012
  10. J. Vican, B. F. Gajdeczko, F. L. Dryer, D. L. Milius, I. A. Aksay, R. A. Yetter, Development of a microreactor as a thermal source for microelectromechanical systems power generation, Proc. Combust. Inst., 29 (2002) 909-916.
  11. X. Wang, J. Zhu, H. Bau, R. J. Gorte, Fabrication of micro-reactors using tape-casting methods, Catal. Lett., 77 (2001) 173-177. https://doi.org/10.1023/A:1013236306883
  12. Y. Suzuki, J. Saito, N. Kasagi, Development of micro catalytic combustor with Pt/Al2O3 thin films, JSME Int. J. B, 47 (2004) 522-527. https://doi.org/10.1299/jsmeb.47.522
  13. G. A. Boyarko, C. J. Sung, S. J. Schneider, Catalyzed combustion of hydrogen oxygen in platinum tubes for micro-propulsion applications, Proc. Combust. Inst., 30 (2005) 2481-2488.
  14. T. Okamasa, G. G. Lee, Y. Suzuki, N. Kasagi, S. Matsuda, Micro Catalytic Combustor Using High- Precision Ceramic Tape Casting, J. Micromech. Microeng., 16(9) (2006) S198-S205. https://doi.org/10.1088/0960-1317/16/9/S05
  15. G. G. Lee, Y. Suzuki, A Study on the modeling of Pt-catalyzed reaction and the characteristics of mass transfer in a micro-scale combustor, Trans. Korean Soc. Mech. Eng. B, 32(11) (2008) 870-877. https://doi.org/10.3795/KSME-B.2008.32.11.870
  16. O. Deutschmann, L. I. Maier, U. Reidel, A. H. Stroemman, R. W. Dibble, Hydrogen assisted catalytic combustion of methane on platinum, Catal. Today, 59 (2000) 141-150. https://doi.org/10.1016/S0920-5861(00)00279-0
  17. L. L. Raja, R. J. Kee, O. Deutschmann, J. Warnatz, L. D. Schmidt, A critical evaluation of Navier- Stokes, boundary layer, and plug-flow models of the flow and chemistry in a catalytic-combustion monolith, Catal. Today, 59 (2000) 47-60. https://doi.org/10.1016/S0920-5861(00)00271-6
  18. S. A. Seyed-Reihani, G. S. Jackson, Effectiveness in catalytic washcoats with multi-step mechanisms for catalytic combustion of hydrogen, Chem. Eng. Sci., 59 (2004) 5937-5948. https://doi.org/10.1016/j.ces.2004.07.028
  19. R. E. Hays, B. Lui, R. Moxom, M. Votsmeier, The effect of washcoat geometry on mass transfer in monolith reactors, Chem. Eng. Sci., 59 (2004) 3169-3181. https://doi.org/10.1016/j.ces.2004.05.002
  20. R. E. Hays, B. Lui, M. Votsmeier, Calculating effectiveness factors in non-uniform washcoat shapes, Chem. Eng. Sci., 60 (2005) 2037-2050. https://doi.org/10.1016/j.ces.2004.11.041
  21. R. E. Hayes, S. T. Kolaczkowski, A study of Nusselt and Sherwood numbers in a monolith reactor, Catal. Today, 47 (1999) 295-303. https://doi.org/10.1016/S0920-5861(98)00310-1
  22. R. Prasad, L. A. Kennedy, E. Ruckenstein, Catalytic combustion, Catal. Rev.-Sci. Eng., 26 (1984) 1-58. https://doi.org/10.1080/01614948408078059

Cited by

  1. Investigation on the Relationship between Mass Transfer and Reaction within the Washcoat of Monolith Type Micro-scale Catalytic Combustor vol.20, pp.2, 2015, https://doi.org/10.15231/jksc.2015.20.2.046