과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China
참고문헌
- Ahmadizadeh, M., Mosqueda, G. and Reinhorn, A.M. (2008), "Compensation of actuator delay and dynamics for real-time hybrid structural simulation", Earthq. Eng. Struct. D., 37(1), 21-42. https://doi.org/10.1002/eqe.743
- Bonnet, P.A. (2006), The development of multi-axis real-time substructure testing, Ph.D. Dissertation, University of Oxford, Oxford.
- Bonnet, P.A., Lim, C.N., Williams, M.S., Blakeborough, A., Neild, S.A., Stoten, D.P. and Taylor, C.A. (2007), "Real-time hybrid experiments with Newmark integration, MCSmd outer-loop control and multi-tasking strategies", Earthq. Eng. Struct. D., 36 (1), 119-141. https://doi.org/10.1002/eqe.628
- Bonnet, P.A., Williams, M.S. and Blakeborough, A. (2008), "Evaluation of numerical time-integration schemes for real-time hybrid testing", Earthq. Eng. Struct. D., 37(13), 1467-1490. https://doi.org/10.1002/eqe.821
- Chen, C. and Ricles, J.M. (2008), "Development of direct integration algorithms for structural dynamics using discrete control theory", J. Eng. Mech.- ASCE., 134 (8), 676-683. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:8(676)
- Chen, C. and Ricles, J.M. (2012), "Large-scale real-time hybrid simulation involving multiple experimental substructures and adaptive actuator delay compensation", Earthq. Eng. Struct. D., 41 (3), 549-569. https://doi.org/10.1002/eqe.1144
- Chen, C., Ricles, J.M., Marullo, T.M. and Mercan, O. (2009), "Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm", Earthq. Eng. Struct. D., 38 (1), 23-44. https://doi.org/10.1002/eqe.838
- Gui, Y., Wang, J.T., Jin, F., Chen, C. and Zhou, M.X. (2014), "Development of a family of explicit algorithms for structural dynamics with unconditional stability", Nonlinear Dyn., 77(4), 1157-1170. https://doi.org/10.1007/s11071-014-1368-3
- Horiuchi, T., Inoue, M., Konno, T. and Namita, Y. (1999), "Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber", Earthq. Eng. Struct. D., 28 (10), 1121-1141. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1121::AID-EQE858>3.0.CO;2-O
- Horiuchi, T., and Konno, T. (2001), "A new method for compensating actuator delay in real-time hybrid experiments", Philos. T. R. Soc. London. A, 359(1786), 1893-1909. https://doi.org/10.1098/rsta.2001.0878
- Jung, R.Y., Benson Shing, P., Stauffer, E. and Thoen, B. (2007), "Performance of a real-time pseudodynamic test system considering nonlinear structural response", Earthq. Eng. Struct. D., 36 (12), 1785-1809. https://doi.org/10.1002/eqe.722
- MATLAB. (2006), The MathWorks, Inc., Natick, Mass.
- Nakashima, M. and Masaoka, N. (1999), "Real-time on-line test for MDOF systems", Earthq. Eng. Struct. D., 28 (4), 393-420. https://doi.org/10.1002/(SICI)1096-9845(199904)28:4<393::AID-EQE823>3.0.CO;2-C
- Reinhorn, A.M., Sivaselvan, M.V., Liang, Z. and Shao, X.Y. (2004), "Real-time dynamic hybrid testing of structural systems", Proceedings of 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper No. 1644.
- Reinhorn, A.M., Shao X.Y., Sivaselvan, M.V., Pitman, M. and Weinreber, S. (2006), "Real time dynamic hybrid testing using shake tables and force-based substructuring", Proceedings of the ASCE 2006 Structures Congress, St. Louis, Missouri, USA, May.
- Schellenberg, A., Mahin, S.A. and Fenves, G.L. (2009), Advanced implemention of hybrid simulation, PEER Report 2009/104.
- Shao, X., Reinhorn, A.M. and Sivaselvan, M.V. (2011), "Real-time hybrid Simulation using shake tables and dynamic actuators", J. Struct. Eng. - ASCE, 137(7), 748-760. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000314
- Shing, P., Wei, Z., Jung, R.Y. and Stauffer, E. (2004), "NEES FAST HYBRID TEST SYSTEM AT THE UNIVERSITY OF COLORADO", Proceeding of 13th World Conference on Earthquake Engineering, Vancouver, Canada, August.
- Wallace, M.I., Wagg, D.J. and Neild, S.A. (2005), "An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring", Proc. R. Soc. A, 461 (2064), 3807-3826. https://doi.org/10.1098/rspa.2005.1532
- Wu, B., Wang, Z. and Bursi O.S. (2013), "Actuator dynamics compensation based on upper bound delay for real-time hybrid simulation", Earthq. Eng. Struct. D., 42(12), 1749-1795. https://doi.org/10.1002/eqe.2296
- Wang, Q., Wang, J.T., Jin, F., Chi, F.D. and Zhang, C.H. (2011), "Real-time dynamic hybrid testing for soil-structure interaction analysis", Soil Dyn. Earthq. Eng., 31(12), 1690-1702. https://doi.org/10.1016/j.soildyn.2011.07.004
- Zhu, F., Wang, J.T., Jin, F., Zhou, M.X. and Gui, Y. (2014), "Simulation of large-scale numerical substructure in real-time dynamic hybrid testing", Earthq. Eng. Eng. Vib., 13(4), 599-609. https://doi.org/10.1007/s11803-014-0266-5
피인용 문헌
- Stability analysis of MDOF real-time dynamic hybrid testing systems using the discrete-time root locus technique vol.44, pp.2, 2015, https://doi.org/10.1002/eqe.2467
- Real-time hybrid simulation of full-scale tuned liquid column dampers to control multi-order modal responses of structures vol.138, 2017, https://doi.org/10.1016/j.engstruct.2017.02.004
- Improvement of Real-Time Hybrid Simulation Using Parallel Finite-Element Program pp.1559-808X, 2018, https://doi.org/10.1080/13632469.2018.1469442
- Advances in Real-Time Hybrid Testing Technology for Shaking Table Substructure Testing vol.6, pp.None, 2014, https://doi.org/10.3389/fbuil.2020.00123
- Stability Prediction for Real-Time Hybrid Simulation with Different Physical and Numerical Substructure Discretization Using Asynchronous Multirate Simulation vol.147, pp.11, 2014, https://doi.org/10.1061/(asce)em.1943-7889.0001992