과제정보
연구 과제 주관 기관 : National Science Foundation of China
참고문헌
- Ahmadizadeh, M., Mosqueda, G. and Reinhorn, A.M. (2008). "Compensation of actuator delay and dynamics for real-time hybrid structural simulation", Earthq. Eng. Struct. D., 37(1), 21-42. https://doi.org/10.1002/eqe.743
- Blakeborough, A., Williams, M.S., Darby, A.P. and Williams, D.M. (2001), "The development of real-time substructure testing", Philos. T. R. Soc. Lond. A, 359, 1869-1891. https://doi.org/10.1098/rsta.2001.0877
- Bonnet, P.A. (2006), The development of multi-axis real-time substructure testing, PhD thesis, University of Oxford.
- Bonnet, P.A., Williams, M.S. and Blakeborough, A. (2007a), "Compensation of actuator dynamics in real-time hybrid tests", Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 221(2), 251-264. https://doi.org/10.1243/09544119JEIM168
- Bonnet, P.A., Lim, C.M., Williams, M.S., Blakeborough, A., Neild, S.A., Stoten, D.P. and Taylor, C.A. (2007b), "Real-time hybrid experiments with Newmark integration, MCSmd outer-loop control and multi-tasking strategies", Earthq. Eng. Struct. D., 36(1), 119-141. https://doi.org/10.1002/eqe.628
- Bursi, O.S. and Wagg, D. (2008), Modern Testing Techniques for Structural Systems, Dynamics and Control , (Eds., Bursi, O.S and Wagg, D.), CISM-Springer Wien NewYork.
- Bursi, O.S., He, L., Lamarche, C.P. and Bonelli, A. (2010), "Linearly implicit time integration methods for real-time dynamic substructure testing", J. Eng. Mech. - ASCE, 136,1380-1389. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000182
- Carrion, J.E. and Spencer Jr., B.F. (2008), "Real-time hybrid testing using model-based delay compensation", Smart Struct. Syst., 4(6), 809-828. https://doi.org/10.12989/sss.2008.4.6.809
- Chae Y., Kazemibidokhti K.K. and Ricles J.M. (2013), "Adaptive time series compensator for delay compensation of servo-hydraulic actuator systems for real-time hybrid simulation", Earthq. Eng. Struct. D., 42(11), 1697-1715. https://doi.org/10.1002/eqe.2294
- Chen, C. and Ricles, J.M. (2009), "Improving the inverse compensation method for real-time hybrid simulation through a dual compensation scheme", Earthq. Eng. Struct. D., 38(10), 1237-1255. https://doi.org/10.1002/eqe.904
- Chen, C., Ricles, J. and Guo, T. (2012), "Improved adaptive inverse compensation technique for real-time hybrid simulation", J. Eng. Mech. - ASCE, 138(12), 1432-1446. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000450
- Chi, F., Wang, J. and Jin, F. (2010), "Delay-dependent stability and added damping of SDOF real-time dynamic hybrid testing", Earthq. Eng. Eng. Vib., 9(3), 425-438. https://doi.org/10.1007/s11803-010-0026-0
- Darby, A.P., Blakeborough, A. and Williams, M.S. (2001), "Improved control algorithm for real-time substructure testing", Earthq. Eng. Struct. D., 30(3), 431-448. https://doi.org/10.1002/eqe.18
- Darby, A.P., Williams, M.S. and Blakeborough, A. (2002), "Stability and delay compensation for real-time substructure testing", J. Eng. Mech. - ASCE, 128(12), 1276-1284. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:12(1276)
- Diehl, M., Bock, H.G. and Schloder, J.P. (2005), "A real-time iteration scheme for nonlinear optimization in optimal feedback control", SIAM J. Control Optim., 43(5), 1714-1736. https://doi.org/10.1137/S0363012902400713
- Horiuchi, T., Inoue, M., Konno, T. and Namita, Y. (1999), "Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber", Earthq. Eng, Struct. D., 28(10), 1121-1141. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1121::AID-EQE858>3.0.CO;2-O
- Horiuchi, T. and Konno, T. (2001), "A new method for compensationg actuator delay in real-time hybrid experiments", Philos. T. R. Soc. Lond. A, 359, 1893-1909. https://doi.org/10.1098/rsta.2001.0878
- Isaacson, E. and Keller, H.B. (1994), Analysis of numerical methods, Dover Publications, INC., New York.
- Jung, R.Y. and Shing, P.B. (2006). "Performance evaluation of a real-time pseudodynamic test system", Earthq. Eng. Struct. D., 35(7), 789-810. https://doi.org/10.1002/eqe.547
- Li, Y. (2007), Seismic performance of buckling-restrained braces and substructure testing methods, PhD Thesis, Harbin Institute of Technology, Harbin, China. (in Chinese)
- MTS System Corporation (2001), "Model 793.10 Multipurpose Testware: User Information and Software Reference".
- Nakashima, M., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo-dynamic testing", Earthq. Eng. Struct. D., 21(1), 79-92. https://doi.org/10.1002/eqe.4290210106
- Nakashima, M. and Masaoka, N. (1999), "Real-time on-line test for MDOF systems", Earthq. Eng. Struct. D., 28(4), 393-420. https://doi.org/10.1002/(SICI)1096-9845(199904)28:4<393::AID-EQE823>3.0.CO;2-C
- Nguyen, V.T. and Dorka, U.E. (2008), "Phase lag compensation in real-time substructure testing based on online system identification", Proceeding of the the 14th World Conference on Earthquake Engineering, October 12-17, 2008, Beijing, China.
- Nguyen, V.T., Dorka, U.E. and Phan, T.V. (2011), "Adaptive phase lag compensation in real-time substructure testing of non-linear tuned mass damper using hydraulic shaking table", Proceeding of the the 2011 International Conference on Earthquakes and Structures (ICEAS'11), Seoul, Korea, September 18-23.
- Soderstrom, T. and Stoica, P. (1989), System Identification, Prentice Hall International, Hemel Hempstead, UK.
- Wallace, M.I., Sieber, J., Neild, S.A., Wagg, D.J. and Krauskopf, B. (2005a), "Stability analysis of real-time dynamic substructuring using delay differential equation models", Earthq. Eng. Struct. D., 34, 1817-1832. https://doi.org/10.1002/eqe.513
- Wallace, M.I., Wagg, D.J. and Neild, S.A. (2005b), "An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring", T. R. Soc. London A, 461(2064), 3807-3826. https://doi.org/10.1098/rspa.2005.1532
- Wang, Z. (2012), Control and Time Integration Algorithms for Real-time Hybrid Simulation, PhD Thesis, Harbin Institute of Technology, China and University of Trento, Italy.
- Wang, Z. and Wu, B. (2009), "A real-time online approach to delay estimation based on the least-square algorithm", J. Vib. Eng., 22(6), 625-631. (in Chinese)
- Wu, B., Deng, L. and Yang, X. (2009), "Stability of central difference method for dynamic real-time substructure testing", Earthq. Eng. Struct. D., 38(14), 1649-1663. https://doi.org/10.1002/eqe.927
- Wu, B., Xu, G. and Shing P.B. (2011), "Equivalent force control method for real-time testing of nonlinear structures", J. Earthq. Eng., 15(1), 143-164. https://doi.org/10.1080/13632461003681171
- Wu, B., Wang, Z. and Bursi, O.S. (2013), "Actuator dynamics compensation based on upper bound delay for real-time hybrid simulation", Earthq. Eng. Struct. D., 42(2), 1749-1765. DOI: 10.1002/eqe.2296
- Wu, B. and Wang, Z. (2014), Delay estimation and compensation in Real-time Hybrid Simulation with BRB specimen, Network for Earthquake Engineering Simulation (distributor), Dataset, DOI:10.4231/D3J96094F
- Zhao, J., French, C., Shield, C. and Posbergh, T. (2003), "Considerations for the development of real-time dynamic testing", Earthq. Eng. Struct. D., 32(11), 1773-1794. https://doi.org/10.1002/eqe.301
피인용 문헌
- Equivalent force control combined with adaptive polynomial-based forward prediction for real-time hybrid simulation vol.24, pp.11, 2017, https://doi.org/10.1002/stc.2018
- Reliability Assessment of Real-time Hybrid Simulation Under Worst-Case Scenarios Using Frequency-Domain Evaluation Indices vol.41, pp.3, 2017, https://doi.org/10.1007/s40799-017-0172-7
- Comparison of online model updating methods in pseudo-dynamic hybrid simulations of TADAS frames vol.15, pp.10, 2017, https://doi.org/10.1007/s10518-017-0147-1
- Hybrid simulation of steel frame structures with sectional model updating vol.45, pp.8, 2016, https://doi.org/10.1002/eqe.2706
- Stability Analysis of Real-Time Hybrid Simulation for Time-Varying Actuator Delay Using the Lyapunov-Krasovskii Functional Approach vol.145, pp.1, 2019, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001550
- Applications of a Family of Unconditionally Stable, Dissipative, Explicit Methods to Pseudodynamic Tests vol.41, pp.1, 2017, https://doi.org/10.1007/s40799-016-0151-4
- A robust linear-quadratic-gaussian controller for the real-time hybrid simulation on a benchmark problem vol.133, pp.None, 2014, https://doi.org/10.1016/j.ymssp.2019.106260
- Test Verification of Two-Stage Adaptive Delay Compensation Method for Real-Time Hybrid Simulation vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/7848421
- Applications of the RST Algorithm to Nonlinear Systems in Real-Time Hybrid Simulation vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/5734720
- An adaptive delay compensation method based on a discrete system model for real-time hybrid simulation vol.25, pp.5, 2014, https://doi.org/10.12989/sss.2020.25.5.569
- Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation vol.26, pp.3, 2020, https://doi.org/10.12989/sss.2020.26.3.373
- Mixed Sensitivity-Based Robust H∞ Control Method for Real-Time Hybrid Simulation vol.13, pp.5, 2014, https://doi.org/10.3390/sym13050840
- Advancing real-time hybrid simulation for coupled nonlinear soil-isolator-structure system vol.28, pp.1, 2014, https://doi.org/10.12989/sss.2021.28.1.105