DOI QR코드

DOI QR Code

Fast Non-integer Motion Estimation for HEVC Encoder

HEVC 부호화기를 위한 고속 비정수 움직임 추정

  • 한우진 (가천대학교 소프트웨어학과)
  • Received : 2014.11.20
  • Accepted : 2014.12.01
  • Published : 2014.12.25

Abstract

The latest video coding standard, HEVC can improve the coding efficiency significantly compared with the H.264/AVC. However the HEVC encoder requires much larger computational complexities. The longer 8-tap interpolation filter of the HEVC which is used in a non-integer motion estimation is one of the reasons and this paper aims to reduce the computational complexities. First of all, three shorter-tap interpolation filters for a motion estimation process are tested rather than the use of a standard interpolation filter. In addition, the fast searching strategies to reduce the number of comparisons for choosing the best non-integer motion vector are proposed. Finally, the interpolation process is selectively applied according to the searching strategy. By combining all of the techniques, the experimental results show that the encoding times can be reduced by 13.6%, 18.5% and 21.1% with the coding efficiency penalties of 0.7%, 1.5% and 2.5%, respectively. For the full-HD video sequences, the coding efficiency penalties are reduced to 0.4%, 1.1% and 1.6% at the same level of the encoding time savings, which shows the effectiveness of the proposed schemes for the high resolution video sequences.

최신 영상 압축 표준 방식인 HEVC는 H.264/AVC에 비해 압축 효율을 크게 개선시킬 수 있지만, 부호화기 복잡도 또한 크게 증가한다. 특히 비정수 정밀도 움직임 보상에 사용되는 보간 필터의 길이가 종래 6-tap에서 8-tap으로 증가함으로 인해, 비정수 정밀도 움직임 추정에 많은 연산량이 요구된다. 본 논문에서는 HEVC의 비정수 움직임 추정 과정에 대한 압축 효율 기여도 및 복잡도를 분석하고, 이로부터 부호화기의 복잡도를 효과적으로 감소시키기 위한 방법을 제안한다. 먼저, 움직임 추정과 움직임 보상에 사용되는 보간 필터를 분리하고, 움직임 추정만을 위한 최적 필터 길이를 찾는다. 또한 최적 비정수 움직임 벡터를 찾기 위한 탐색 과정에서 특정 조건을 만족하는 일부 후보들만을 검사하고, 꼭 필요한 보간 과정만을 수행하도록 함으로써 부호화 복잡도를 감소시킨다. 실험 결과, 제안한 방법을 사용하면 평균 압축 성능 하락 폭 0.7%, 1.5%, 2.5%에서 부호화기 복잡도를 각각 13.6%, 18.5%, 21.1% 감소시킬 수 있었다. 또한 고해상도 영상($1920{\times}1080$)의 경우 압축 성능 하락 폭이 0.4%, 1.1%, 1.6%로 감소함으로써 제안한 방법이 고해상도 영상에 더욱 효과적임을 보였다.

Keywords

References

  1. G. J. Sullivan, J.-R. Ohm, W.-J. Han and T. Wiegand, "Overview of the high efficiency video coding (HEVC) standard," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 22, No. 12, pp. 1649-1668, Dec. 2012. https://doi.org/10.1109/TCSVT.2012.2221191
  2. T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, "Overview of the H.264/AVC video coding standard," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7, pp. 560-576, Aug. 2003. https://doi.org/10.1109/TCSVT.2003.815165
  3. E. Ohwovoriole, Y. Andreopoulos, "Rate-distortion performance of contemporary video codecs: Comparison of Google/WebM VP8, AVC/H.264, and HEVC TMuC", LENS Symp., London, Sep. 2010.
  4. F. De Simone, L. Goldmann, J.-S. Lee, T. Ebrahimi, "Performance analysis of VP8 image and video compression based on subjective evaluations," SPIE Appl. Digital Image Proc. XXXIV, Aug. 2011.
  5. Woo-Jin Han, Junghye Min, Il-Koo Kim, Elena Alshina, Alexander Alshin, Tammy Lee, Jianle Chen, Vadim Seregin, Sunil Lee, Yoon-Mi Hong, Min-Su Cheon, Nikolay Shlyakhov, Ken McCann, Thomas Davies and Jeong-Hoon Park, "Improved video compression efficiency through flexible unit representation and corresponding extension of coding tools," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 20, No. 12, pp. 1709-1720, Dec. 2010. https://doi.org/10.1109/TCSVT.2010.2092612
  6. R. H. Gweon, Y. L. Lee, J. Lim, "Early termination of CU encoding to reduce HEVC complexity," JCTVC-F045, 6th JCT-VC meeting, Jul. 2011, Torino, Italy.
  7. J. Kim, G. Kim and C. Yim, "CU size decision method based on statistics for HEVC encoding," Proc. of the Institute of Electronics and Information Engineers of Korea, pp. 533-535, Nov. 2013.
  8. X. Shen, L. Yu and J. Chen, "Fast coding unit size selection for HEVC based on Bayesian decision rule," Proc. of Picture Coding Symposium (PCS), pp. 453-456, May 2012.
  9. S. Yoo, Y. Ahn and D. Sim, "Fast HEVC encoding based on CU-depth first decision," Journal of the Institute of Electronics and Information Engineers of Korea, Vol. 49, SP No. 3, pp. 40-50, 2012.
  10. W. Jiang, H. Ma, Y. Chen, "Gradient based fast mode decision algorithm for intra prediction in HEVC," Proc. of Consumer Electronics, Communications and Networks (CECNet), pp. 1836-1840, Apr. 2012.
  11. L. Zhao, L. Zhang, S. Ma and D. Zhao, "Fast mode decision algorithm for intra prediction in HEVC," Proc. of Visual Communications and Image Processing (VCIP), pp. 1-4, Nov. 2011.
  12. Z. Chen, C. Du, J. Wang, Y. He, "PPFPS-a paraboloid prediction based fractional pel search strategy for H.26L," Proc. of IEEE ISCAS, Vol. 3, III-9-III-12, USA, 2002.
  13. Z. Chen, J. Xu, Y. He, J. Zheng, "Fast integer-pel and fractional-pel motion estimation for H.264/AVC," Journal of Visual Communication and Image Representation, Vol. 17, Issue 2, pp. 264-290, Apr 2006. https://doi.org/10.1016/j.jvcir.2004.12.002
  14. Kemal Ugur, Alexander Alshin, Elena Alshina, Frank Bossen, Woo-Jin Han, Jeong-Hoon Park and Jani Lainema, "Motion Compensated Prediction and Interpolation Filter Design in H.265/HEVC," IEEE Journal of Selected Topics in Signal Processing, Vol. 7, No. 6, pp. 946-956, December 2013. https://doi.org/10.1109/JSTSP.2013.2272771
  15. HEVC reference software version 15.0 (HM15.0), https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-15.0, Jul. 2014.
  16. F. Bossen, "Common HM tst conditions and software reference configurations," in Proc. of JCTVC-L1100, 12th JCT-VC meeting, Geneva, Switzerland, Jan. 2013.
  17. G. Bjontegaard, "Calculation of average PSNR differences between RD curves," VCEG-M33, 13th VCEG meeting, Austin, TX, USA, Apr. 2001.
  18. S. Zhu and K. MA, "A new diamond search algorithm for fast block-matching motion estimation," IEEE Transactions on Image Processing, Vol. 9, No. 2, pp. 287-290, Feb. 2000. https://doi.org/10.1109/83.821744