DOI QR코드

DOI QR Code

The Analysis for Minimum Infective Dose of Foodborne Disease Pathogens by Meta-analysis

메타분석에 의한 식중독 원인 미생물들의 최소감염량 분석

  • Park, Myoung Su (Department of Food and Nutrition, Kunsan National University) ;
  • Cho, June Ill (Food Microbiology Division, National Institute of Food and Drug Safety Evaluation) ;
  • Lee, Soon Ho (Foodborne Diseases Prevention and Surveillance Division, Ministry of Food and Drug Safety) ;
  • Bahk, Gyung Jin (Department of Food and Nutrition, Kunsan National University)
  • 박명수 (군산대학교 식품영양학과) ;
  • 조준일 (식품의약품안전평가원 미생물과) ;
  • 이순호 (식품의약품안전처 식중독예방과) ;
  • 박경진 (군산대학교 식품영양학과)
  • Received : 2014.07.19
  • Accepted : 2014.09.29
  • Published : 2014.12.31

Abstract

Minimum infective dose (MID) data has been recognized as an important and absolutely needed in quantitative microbiological assessment (QMRA). In this study, we performed a comprehensive literature review and meta-analysis to better quantify this association. The meta-analysis applied a final selection of 82 published papers for total 12 species foodborne disease pathogens (bacteria 9, virus 2, and parasite 1 species) which were identified and classified based on the dose-response models related to QMRA studies from PubMed, ScienceDirect database and internet websites during 1980-2012. The main search keywords used the combination "food", "foodborne disease pathogen", "minimum infective dose", and "quantitative microbiological risk assessment". The appropriate minimum infective dose for B. cereus, C. jejuni, Cl. perfringens, Pathogenic E. coli (EHEC, ETEC, EPEC, EIEC), L. monocytogenes, Salmonella spp., Shigella spp., S. aureus, V. parahaemolyticus, Hepatitis A virus, Noro virus, and C. pavum were $10^5cells/g$ (fi = 0.32), 500 cells/g (fi = 0.57), $10^7cells/g$ (fi = 0.56), 10 cells/g (fi = 0.47) / $10^8cells/g$ (fi = 0.71) / $10^6cells/g$ (fi = 0.70) / $10^6cells/g$ (fi = 0.60), $10^2{\sim}10^3cells/g$ (fi = 0.23), 10 cells/g (fi = 0.30), 100 cells/g (fi = 0.32), $10^5cells/g$ (fi = 0.45), $10^6cells/g$ (fi = 0.64), $10{\sim}10^2particles/g$ (fi = 0.33), 10 particles/g (fi = 0.71), and $10{\sim}10^2oocyst/g$ (fi = 0.33), respectively. Therefore, these results provide the preliminary data necessary for the development of foodborne pathogens QMRA.

본 연구는 정량적 미생물 위해평가(Quantitative microbial risk assessment: QMRA)에 절대적으로 필요한 9종의 식중독 세균, 2종의 바이러스, 1종의 원생동물에 대한 최소 감염량(minimum infective dose)을 선정한 연구이다. 주요 식중독 미생물들의 최소 감염량을 선정하기 위하여, 1980년부터 2012년까지 PubMed, ScienceDirect database 등에서 주요 식중독 미생물들의 최소 감염량 및 위해평가 자료 82종을 수집하였다. 수집된 자료는 메타분석(mata-analysis)에서 사용되고 있는 relative frequency(fi, 상대빈도 값)를 계산하여 가장 적정한 최소 감염량을 추정 및 선정하였다. 주요 식중독 미생물들의 최소 감염량은, B. cereus $10^5cells/g$ (fi = 0.32), C. jejuni 500 cells/g (fi = 0.57), Cl. perfringens $10^7cells/g$ (fi = 0.56), Pathogenic E. coli 중 EHEC 10 cells/g (fi = 0.47), ETEC $10^8cells/g$ (fi = 0.71), EPEC $10^6cells/g$ (fi = 0.70), EIEC $10^6cells/g$ (fi = 0.60), L. monocytogenes $10^2{\sim}10^3cells/g$ (fi = 0.23), Salmonella spp. 10 cells/g (fi = 0.30), Shigella spp. 100 cells/g (fi = 0.32), S. aureus $10^5cells/g$ (fi = 0.45), V. parahaemolyticus $10^6cells/g$ (fi = 0.64), Hepatitis A virus $10{\sim}10^2particles/g$ (fi = 0.33), Noro virus 10 particles/g (fi = 0.71), C. pavum $10{\sim}10^2oocyst/g$ (fi = 0.33)으로 나타났다. 본 연구결과는 향후 국내 QMRA를 통한 위해수준 추정결과의 정확성을 향상시키는데 기여할 수 있을 것으로 기대된다.

Keywords

References

  1. Mead, P.S., Slutsker, L., Dietz, V., McCaig, L.F., Bresee, J.S., Shapiro, C., Griffin, P.M. and Tauxe, R.V.: Food-Related Illness and Death in the United States. Emerg. Infect. Dis., 5, 607-625 (1999). https://doi.org/10.3201/eid0505.990502
  2. FAO/WHO: Joint FAO/WHO Imitative on Microbial Risk Assessment. IAFP 88th Annual meeting. Aug 7. Minneapolis, Minnesota, USA. (2001).
  3. Baranyi, J. and Roverts, T.A.: A dynamic approach to predicting bacterial growth in food. J. Food Microbiol., 23, 277-294 (1994). https://doi.org/10.1016/0168-1605(94)90157-0
  4. 식품의약품안전청 (KFDA): 식중독예방 대국민 홍보사이트 Available from: http://fm.kfda.go.kr/ (2009).
  5. 박경진: 국내 주요 가공식품에 대한 위해순위 결정. 한국식품위생안전성학회지, 24, 200-203 (2009).
  6. Buchanan, R.L., Smith, J.L. and Long, W.: Microbial risk assessment: Dose response relations and risk characterization. Int. J. Food Microbiol., 58, 159-172 (2000). https://doi.org/10.1016/S0168-1605(00)00270-1
  7. Luning, P.A., Devlieghere, F. and Verhe, R.: Safety in the agrifood chain. Wageningen Academic Publishers. 95, (2006)
  8. Wikipedia: Infectious doses for some known microorganisms. Available from: http://en.wikipedia.org/wiki/Infectious_dose., (2010).
  9. Burrows, W.D. and Renner, S.E.: Biological Warfare Agents as Threats to Potable Water. Environ. Health Perspect., 107, 975-984 (1999). https://doi.org/10.1289/ehp.99107975
  10. Todar, K.: Pathogenic E. coli (page 4). Todar's Online Text book of Bacteriology. Available from:http://textbookofbacteriology.net/e.coli_4.html. (2012).
  11. Leggett, H.C., Cornwallis, C.K. and West, S.A.: Mechanisms of Pathogenesis, Infective Dose and Virulence in Human Parasites. PLoS Pathog., 8, 1-5 (2012)
  12. Kisluk, G., Hoover, D.G., Kneil, K.E. and Yaron, S.: Quantification of low and high levels of Salmonella enterica serovar Typhimurium on leaves. Lebenson. Wiss. Technol., 45, 36-42 (2012). https://doi.org/10.1016/j.lwt.2011.07.029
  13. Kothary, M.H. and BABU, U.S.: Infective dose of food borne pathogens in volunteers: a review. J. Food Saf., 21, 49-73 (2001). https://doi.org/10.1111/j.1745-4565.2001.tb00307.x
  14. FDA CFSAN (Food and Drug Administration Center for Food Safety and Applied Nutrition): Quantitative Risk Assessment on the Public Health Impact of Pathogenic vibrio parahaemolyticus In Raw Oysters., 17-18 (2005).
  15. Dawson, D.: Foodborne protozoan parasites. Int. J. Food Microbiol., 103, 207-227 (2005). https://doi.org/10.1016/j.ijfoodmicro.2004.12.032
  16. Sofos, J.N.: Bacterial Foodborne Diseases. FAVA-OIE Joint Sym. Emer. Dis., 27, 19-34 (2008).
  17. Snelling, W.J., Matsuda, M., Moore, J.E. and Dooley J.S.G.: Under the Microscope Campylobacter jejuni. Lett. Appl. Microbiol., 41, 297-302 (2005). https://doi.org/10.1111/j.1472-765X.2005.01788.x
  18. Giovannini, A., Migliorati, G., Prencipe, V., Calderone, D., Zuccolo, C. and Cozzolino, P.: Risk assessment for listeriosis in consumers of Parma and San Daniele hams. Food Control., 18, 789-799 (2007). https://doi.org/10.1016/j.foodcont.2006.03.014
  19. Hsu, B.M., Wu, S.F., Huang, S.W., Tseng, Y.J., Ji, D.D., Chen, J.S. and Shih, F. C.: Differentiation and identification of Shigella spp. and enteroinvasive Escherichia coli in environmental waters by a molecular method and biochemical test. Water res., 44, 949-955 (2010). https://doi.org/10.1016/j.watres.2009.10.004
  20. Stevenypark: Food Toxemia-Non-Inflammatory Diarrhea. Available from: http://quizlet.com/7078170/food-toxemia-non-inflammatory- diarrhea-57-flash-cards., (2011).
  21. Iwahori, J.I., Yamamoto, A., Suzuki, H., Yamamoto, T., Tsutsui, T., Motoyama, K., Sawada, M., Matsushita, T., Hasegawa, A. and Osaka, K.: Quantitative Risk Assessment of Vibrio parahaemolyticus in Finfish: A model of Raw Horse Mackerel Consumption in Japan. Risk Anal., 30, 1817-1832 (2010). https://doi.org/10.1111/j.1539-6924.2010.01444.x
  22. PHAC (Public Health Agency of Canada): Infective Doses and Pathogen Carriage. Available from: http://199.140.114.2/PDF/Atlanta2010/Slides_FSEC_JGreig_Dose., (2010).
  23. Xavier, C., Gonzales-Barron, U., Paula, V., Estevinho, L. and Cadavez, V.: Meta-analysis of the incidence of foodborne pathogens in Portuguese meats and their products. Food Res. Int., 55, 311-323, (2014). https://doi.org/10.1016/j.foodres.2013.11.024
  24. Xavier, C., Gonzales-Barron, U., Paula, V., Estevinho, L. and Cadavez, V.: Meta-analysis of the incidence of foodborne pathogens in Portuguese meats and their products. Food Res. Int., 55, 311-323 (2014). https://doi.org/10.1016/j.foodres.2013.11.024
  25. Den Besten, H.M.W. and Zwietering, M.H.: Meta-analysis for quantitative microbiological risk assessments and benchmarking data. Trends Food Sci. Technol., 25, 34-49 (2012). https://doi.org/10.1016/j.tifs.2011.12.004
  26. Gonzales-Barron, U. and Butler, F.: The use of meta-analytical tools in risk assessment for food safety. Food Microbiol., 28, 823-827 (2011). https://doi.org/10.1016/j.fm.2010.04.007