DOI QR코드

DOI QR Code

Fire design of concrete encased columns: Validation of an advanced calculation model

  • Zaharia, R. (Politehnica University of Timisoara) ;
  • Dubina, D. (Politehnica University of Timisoara)
  • Received : 2012.12.15
  • Accepted : 2014.04.29
  • Published : 2014.12.25

Abstract

The fire resistance of composite steel and concrete structures may be determined by using the simplified methods provided in EN 1994-1-2. For the particular situations not covered by the standard, an advanced calculation model might be applied, using special purpose programs for the analysis of structures in fire. The validation of these programs has always been an important issue for software developers, but also for designers and authorities. Clause 4.4.4 from EN 1994-1-2 refers to the validation of the advanced calculation models and states that these models must be validated through relevant test results. The paper presents the calculation of fire resistance of the composite columns in a high-rise building built in Romania, and focusses on the validation of the calculation model (computer program SAFIR), for this particular case. This validation, asked by the Romanian authorities, considers the available experimental results of a fire test, performed on a similar composite steel-concrete column.

Keywords

References

  1. C.E.B. Comite Europeen du Beton (1964), European Committee for Concrete, "International recommendations on reinforced concrete structures".
  2. Choi, J., Kim, H. and Haj-ali, R. (2010), "Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures", Steel Compos. Struct., Int. J., 10(2), 129-149. https://doi.org/10.12989/scs.2010.10.2.129
  3. EN 1990 (2004), Eurocode: Basis of Design, CEN, Brussels, Belgium.
  4. EN 1991-1-2 (2005), Eurocode 1 - Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire, CEN, Brussels, Belgium.
  5. EN 1992-1-2 (2005), Eurocode 2 - Design of concrete structures - Part 1-2: General rules - Structural Fire Design, CEN, Brussels, Belgium.
  6. EN 1993-1-2 (2005), "Eurocode 3 - Design of steel structures. Part 1-2. General rules - Structural Fire Design", CEN, Brussels, Belgium.
  7. EN 1994-1-1 (2005), Eurocode 4 - Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings, CEN, Brussels, Belgium.
  8. EN 1994-1-2 (2005), Eurocode 4 - Design of composite steel and concrete structures - Part 1-2: General rules - Structural fire design, CEN, Brussels, Belgium.
  9. Foster, S., Chladna, M., Hsieh, C. and Burgess, I. (2007), "Thermal and structural behaviour of a full-scale composite building subject to severe compartment fire", Fire Safety J., 42(3), 183-199 https://doi.org/10.1016/j.firesaf.2006.07.002
  10. Franssen, J.M. (2005), "SAFIR: A thermal/structural program modelling structures under fire", Eng. J. - Am. Inst. Steel Construct. Inc., 42(3), 143-158.
  11. Franssen, J.M., Cooke, G.M.E. and Latham, D.J. (1995), "Numerical simulation of a full-scale test on a loaded steel framework", J. Constr. Steel Res., 35(3), 377-408. https://doi.org/10.1016/0143-974X(95)00010-S
  12. Franssen, J.M., Kodur, V. and Zaharia, R. (2009), Designing Steel Structures for Fire Safety, CRC Press, Taylor & Francis Group, London, UK.
  13. Gillie, M., Burgess, I., Franssen, J.M., Kwasniewski, L. and Wang, Y. (2008), "Global modelling of structures in fire", COST Action C26, "Urban habitat constructions under catastrophic events", (Editors: Mazzolani, F., Mistakidis, E., Borg, R P., Byfield, M., De Matteis, G., Dubina, D., Indirli, M., Mandara, A., Muzeau, J.P., Wald, F. and Wang, Y.), Malta University Publishing, Republic of Malta.
  14. Jones, M.H. and Wang, Y.C. (2008), "Experimental studies and numerical analysis of the shear behavior of fin plates to tubular columns at ambient and elevated temperatures", Steel Compos. Struct., Int. J., 8(3), 179-200. https://doi.org/10.12989/scs.2008.8.3.179
  15. Kwasniewski, L. (2009), "On practical problems with verification and validation of computational models", Archives Civil Eng., 55(3), 323-346.
  16. Kwasniewski, L. (2011), "Computer simulations of structures in fire - feasibility, verification and validation", COST Action TU0904 Integrated Fire Engineering and Response, State of Art Report, (Editors: Wald, F., Burgess, I., De La Quintana, J., Vila Real, P., Kwasniewski, L., Horova, K. and Jana, T.), Print Prazka Technical, Czech Technical University in Prague, Czech Republic.
  17. Nadjai, A., Vassart, O., Ali, F., Talamona, D., Allam, A. and Hawes, M. (2007), "Performance of cellular composite floor beams at elevated temperatures", Fire Safety J., 42(6-7), 489-497. https://doi.org/10.1016/j.firesaf.2007.05.001
  18. Oberkampf, W.L. and Trucano, T.G. (2008), "Verification and validation benchmarks", Nucl. Eng. Des., 238(3), 716-734. https://doi.org/10.1016/j.nucengdes.2007.02.032
  19. Oberkampf, W.L., Trucano, T.G. and Hirsch, C. (2004), "Verification, validation and predictive capability in computational engineering and physics", Appl. Mech., 57(5), 343-384.
  20. P100-1 (2006), Cod de proiectare seismica - Partea I - Prevederi de proiectare pentru cladiri, Buletinul Constructiilor, Volume 12-13, Bucuresti, Romania. [In Romanian]
  21. P118-99 (1999), Normativ de siguranta la foc a constructiilor, IPCT SA, Bucuresti, Romania. [In omanian]
  22. REFAO - CAFIR (1987), Computer assisted analysis of the fire resistance of steel and composite concretesteel structures, C.E.C. Agreement Number $N^{\circ}$ 7210-SA/502, Commission of the European Communities, Directorate-General, Science, Research and Development, EUR 10828 EN, ECSC-EEC- EAEC, Brussels, Luxembourg.
  23. SCI - Sweden Technology Centre (1999), The behaviour of multi-storey steel framed buildings in fire - A European joint research programme, British Steel, Rotherham, UK.
  24. Vassart, O., Bailey, C.G., Hawes, M., Nadjai, A., Simms, W.I., Zhao, B., Gernay, T. and Franssen, J.M. (2011), "Large-scale fire test of unprotected cellular beam actiong in membrane action", J. Struct. Fire Eng., 2(4), 259-267. https://doi.org/10.1260/2040-2317.2.4.259
  25. Yu, C.M., Huang, Z., Burgess, I.W. and Plank, R.J. (2010), "Development and validation of 3D composite structural elements at elevated temperatures", J. Struct. Eng. - ASCE, 136(3), 275-284. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000111
  26. Zaharia, R. and Dubina, D. (2012), "Case study: Fire design validation", COST Action TU0904: Case Studies - Integrated Fire Engineering and Response, CTU Publishing Production, Czech Technical University in Prague, pp. 264-268.
  27. Zaharia, R., Pintea, D. and Dubina, D. (2007), "Fire analysis and design of a composite steel-concrete structure", Proceedings of the 3rd International Conference on Steel and Composite Structures - ICSC07, Manchester, UK, July-August, (Editors: Y.C. Wang and C.K. Choi), pp. 725-730.

Cited by

  1. Stress-transfer in concrete encased and filled tube square columns employed in top-down construction vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.063
  2. Residual strength capacity of fire-exposed circular concrete-filled steel tube stub columns vol.6, pp.5, 2014, https://doi.org/10.12989/acc.2018.6.5.485
  3. Post-fire test of precast steel reinforced concrete stub columns under eccentric compression vol.33, pp.1, 2014, https://doi.org/10.12989/scs.2019.33.1.111