References
- C.E.B. Comite Europeen du Beton (1964), European Committee for Concrete, "International recommendations on reinforced concrete structures".
- Choi, J., Kim, H. and Haj-ali, R. (2010), "Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures", Steel Compos. Struct., Int. J., 10(2), 129-149. https://doi.org/10.12989/scs.2010.10.2.129
- EN 1990 (2004), Eurocode: Basis of Design, CEN, Brussels, Belgium.
- EN 1991-1-2 (2005), Eurocode 1 - Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire, CEN, Brussels, Belgium.
- EN 1992-1-2 (2005), Eurocode 2 - Design of concrete structures - Part 1-2: General rules - Structural Fire Design, CEN, Brussels, Belgium.
- EN 1993-1-2 (2005), "Eurocode 3 - Design of steel structures. Part 1-2. General rules - Structural Fire Design", CEN, Brussels, Belgium.
- EN 1994-1-1 (2005), Eurocode 4 - Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings, CEN, Brussels, Belgium.
- EN 1994-1-2 (2005), Eurocode 4 - Design of composite steel and concrete structures - Part 1-2: General rules - Structural fire design, CEN, Brussels, Belgium.
- Foster, S., Chladna, M., Hsieh, C. and Burgess, I. (2007), "Thermal and structural behaviour of a full-scale composite building subject to severe compartment fire", Fire Safety J., 42(3), 183-199 https://doi.org/10.1016/j.firesaf.2006.07.002
- Franssen, J.M. (2005), "SAFIR: A thermal/structural program modelling structures under fire", Eng. J. - Am. Inst. Steel Construct. Inc., 42(3), 143-158.
- Franssen, J.M., Cooke, G.M.E. and Latham, D.J. (1995), "Numerical simulation of a full-scale test on a loaded steel framework", J. Constr. Steel Res., 35(3), 377-408. https://doi.org/10.1016/0143-974X(95)00010-S
- Franssen, J.M., Kodur, V. and Zaharia, R. (2009), Designing Steel Structures for Fire Safety, CRC Press, Taylor & Francis Group, London, UK.
- Gillie, M., Burgess, I., Franssen, J.M., Kwasniewski, L. and Wang, Y. (2008), "Global modelling of structures in fire", COST Action C26, "Urban habitat constructions under catastrophic events", (Editors: Mazzolani, F., Mistakidis, E., Borg, R P., Byfield, M., De Matteis, G., Dubina, D., Indirli, M., Mandara, A., Muzeau, J.P., Wald, F. and Wang, Y.), Malta University Publishing, Republic of Malta.
- Jones, M.H. and Wang, Y.C. (2008), "Experimental studies and numerical analysis of the shear behavior of fin plates to tubular columns at ambient and elevated temperatures", Steel Compos. Struct., Int. J., 8(3), 179-200. https://doi.org/10.12989/scs.2008.8.3.179
- Kwasniewski, L. (2009), "On practical problems with verification and validation of computational models", Archives Civil Eng., 55(3), 323-346.
- Kwasniewski, L. (2011), "Computer simulations of structures in fire - feasibility, verification and validation", COST Action TU0904 Integrated Fire Engineering and Response, State of Art Report, (Editors: Wald, F., Burgess, I., De La Quintana, J., Vila Real, P., Kwasniewski, L., Horova, K. and Jana, T.), Print Prazka Technical, Czech Technical University in Prague, Czech Republic.
- Nadjai, A., Vassart, O., Ali, F., Talamona, D., Allam, A. and Hawes, M. (2007), "Performance of cellular composite floor beams at elevated temperatures", Fire Safety J., 42(6-7), 489-497. https://doi.org/10.1016/j.firesaf.2007.05.001
- Oberkampf, W.L. and Trucano, T.G. (2008), "Verification and validation benchmarks", Nucl. Eng. Des., 238(3), 716-734. https://doi.org/10.1016/j.nucengdes.2007.02.032
- Oberkampf, W.L., Trucano, T.G. and Hirsch, C. (2004), "Verification, validation and predictive capability in computational engineering and physics", Appl. Mech., 57(5), 343-384.
- P100-1 (2006), Cod de proiectare seismica - Partea I - Prevederi de proiectare pentru cladiri, Buletinul Constructiilor, Volume 12-13, Bucuresti, Romania. [In Romanian]
- P118-99 (1999), Normativ de siguranta la foc a constructiilor, IPCT SA, Bucuresti, Romania. [In omanian]
-
REFAO - CAFIR (1987), Computer assisted analysis of the fire resistance of steel and composite concretesteel structures, C.E.C. Agreement Number
$N^{\circ}$ 7210-SA/502, Commission of the European Communities, Directorate-General, Science, Research and Development, EUR 10828 EN, ECSC-EEC- EAEC, Brussels, Luxembourg. - SCI - Sweden Technology Centre (1999), The behaviour of multi-storey steel framed buildings in fire - A European joint research programme, British Steel, Rotherham, UK.
- Vassart, O., Bailey, C.G., Hawes, M., Nadjai, A., Simms, W.I., Zhao, B., Gernay, T. and Franssen, J.M. (2011), "Large-scale fire test of unprotected cellular beam actiong in membrane action", J. Struct. Fire Eng., 2(4), 259-267. https://doi.org/10.1260/2040-2317.2.4.259
- Yu, C.M., Huang, Z., Burgess, I.W. and Plank, R.J. (2010), "Development and validation of 3D composite structural elements at elevated temperatures", J. Struct. Eng. - ASCE, 136(3), 275-284. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000111
- Zaharia, R. and Dubina, D. (2012), "Case study: Fire design validation", COST Action TU0904: Case Studies - Integrated Fire Engineering and Response, CTU Publishing Production, Czech Technical University in Prague, pp. 264-268.
- Zaharia, R., Pintea, D. and Dubina, D. (2007), "Fire analysis and design of a composite steel-concrete structure", Proceedings of the 3rd International Conference on Steel and Composite Structures - ICSC07, Manchester, UK, July-August, (Editors: Y.C. Wang and C.K. Choi), pp. 725-730.
Cited by
- Stress-transfer in concrete encased and filled tube square columns employed in top-down construction vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.063
- Residual strength capacity of fire-exposed circular concrete-filled steel tube stub columns vol.6, pp.5, 2014, https://doi.org/10.12989/acc.2018.6.5.485
- Post-fire test of precast steel reinforced concrete stub columns under eccentric compression vol.33, pp.1, 2014, https://doi.org/10.12989/scs.2019.33.1.111