DOI QR코드

DOI QR Code

The effect of MWCNTs on the mechanical properties of woven Kevlar/epoxy composites

  • Taraghi, Iman (Department of Mechanical Engineering, Semnan University) ;
  • Fereidoon, Abdolhossein (Department of Mechanical Engineering, Semnan University) ;
  • Mohyeddin, Ali (Department of Mechanical Engineering, Parand Branch, Islamic Azad University)
  • Received : 2014.01.11
  • Accepted : 2014.05.03
  • Published : 2014.12.25

Abstract

This manuscript presents an experimental investigation on the effect of Multi-walled carbon nanotubes (MWCNTs) addition on the tensile, flexural and impact properties of woven Kevlar fabric reinforced epoxy composites. MWCNTs were dispersed in the epoxy resin by sonication technique and the samples were fabricated by hand layup laminating procedure. Scanning electron microscopy (SEM) was used to characterize the microstructure of produced samples. The effects of adding small amounts (${\leq}1%$) of MWCNT on the tensile, flexural and impact (Izod) behaviors of laminated composites were analyzed. Results revealed that MWCNTs enhanced the Young's modulus up to 20%, bending modulus up to 40%, and impact strength up to 45% in comparison with woven Kevlar fabric/epoxy composites. It was found that the maximum improvements in mechanical properties were happened for 0.5 wt.% MWCNT.

Keywords

References

  1. Abot, J., Song, Y., Schulz, M. and Shanov, V. (2008), "Novel carbon nanotube array-reinforced laminated composite materials with higher interlaminar elastic properties", Compos. Sci. Technol., 68(13), 2755-2760. https://doi.org/10.1016/j.compscitech.2008.05.023
  2. Alagar, M., Kumar, A., Mahesh, K.P.O. and Dinakaran, K. (2000), "Studies on thermal and morphological characteristics of E-glass/Kevlar 49 reinforced siliconized epoxy composites", Eur. Polym. J., 36(11), 2449-2454. https://doi.org/10.1016/S0014-3057(00)00038-0
  3. An, F., Lu, C., Li, Y., Guo, J., Lu, X., Lu, H., He, S. and Yang, Y. (2012), "Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite", Mater. Design., 33, 197-202. https://doi.org/10.1016/j.matdes.2011.07.027
  4. Baur, J. and Silverman, E. (2007), "Challenges and opportunities in multifunctional nanocomposite structures", MRS. Bull., 32(4), 328-332. https://doi.org/10.1557/mrs2007.231
  5. Bencomo-Cisneros, J.A., Tejeda-Ochoa, A., Garcia-Estrada, J.A., Herrera-Ramirez, C.A., Hurtado-Macias, A., Martinez-Sanchez, R. and Herrera-Ramirez, J.M. (2012), "Characterization of Kevlar-29 fibers by tensile tests and nanoindentation", J. Alloy. Compd., 536(Supp1), 456-459. https://doi.org/10.1016/j.jallcom.2011.11.031
  6. Chamis, C.C. (1977), Hybrid and Metal Matrix Composites, American Institute of Aeronautics and Astronautics, New York, NY, USA.
  7. Chen, W., Shen, H., Auad, M.L., Huang, C. and Nutt, S. (2009), "Basalt fiber-epoxy laminates with functionalized multi-walled carbon nanotubes", Compos. Part. A-Appl. S., 40(8), 1082-1089. https://doi.org/10.1016/j.compositesa.2009.04.027
  8. Chen, W., Qian, X.M., He, X.Q., Liu, Z.Y. and Liu, J.P. (2012), "Surface Modification of Kevlar by grafting Carbon Nanotubes", J. Appl. Polym. Sci., 123(4), 1983-1990. https://doi.org/10.1002/app.34703
  9. Chou, T.W., Gao, L., Thostenson, E.T., Zhang, Z. and Byun, J.H. (2010), "An assessment of the science and technology of carbon nanotube-based fibers and composites", Compos. Sci. Technol., 70(1), 1-19. https://doi.org/10.1016/j.compscitech.2009.10.004
  10. Chowdhury, F.H., Hosur, M.V. and Jeelani, S. (2006), "Studies on the flexural and thermomechanical properties of woven carbon/nanoclay-epoxy laminates", Mat. Sci. Eng. A., 421(1-2), 298-306. https://doi.org/10.1016/j.msea.2006.01.074
  11. Dalton, A.B., Collins, S., Munoz, E., Razal, J.M., Ebron, V.H., Ferraris, J.P., Coleman, J.N., Kim, B.G. and Baughman, R.H. (2003), "Super-tough carbon-nanotube fibres", Nature., 423, 703. https://doi.org/10.1038/423703a
  12. Dalton, A.B., Collins, S., Razal, J., Munoz, E., Ebron, V.H., Kim, B.G., Coleman, J.N., Ferraris, J.P. and Baughman, R.H. (2004), "Continuous carbon nanotube composite fibers: Properties, potential applications, and problems", J. Mater. Chem., 14, 1-3. https://doi.org/10.1039/b312092a
  13. Guo, F., Zhang, Z.Z., Liu, M.W., Su, F.H. and Zhang, H.J. (2009), "Effect of plasma treatment of Kevlar fabric on the tribological behavior of Kevlar fabric/phenolic composites", Tribol. Int., 42(2), 243-249. https://doi.org/10.1016/j.triboint.2008.06.004
  14. Guo, F., Zhang, Z., Zhang, H., Wang, K. and Jiang, W. (2010), "Tribological behavior of spun Kevlar fabric composites filled with fluorinated compounds", Tribol. Int., 43(8), 1466-1471. https://doi.org/10.1016/j.triboint.2010.02.004
  15. Hernandez-Perez, A., Aviles, F., May-Pat, A., Valadez-Gonzalez, A., Herrera-Franco, P.J. and Bartolo-Perez, P. (2008), "Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes" Compos. Sci. Technol., 68(6), 1422-1431. https://doi.org/10.1016/j.compscitech.2007.11.001
  16. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature., 354, 56-58. https://doi.org/10.1038/354056a0
  17. Kang, T.J., Hong, K.H., Ahn, B.W. and Kim, H.Y. (2011), "Rheological behavior of magnetic carbon nanotubes and their application as Kevlar coating", Fiber. Polym., 12(3), 366-370. https://doi.org/10.1007/s12221-011-0366-z
  18. Kearns, J.C. and Shambaugh, R.L. (2002), "Polypropylene fibers reinforced with carbon nanotubes", J. Appl. Polym. Sci., 86(8), 2079-2084. https://doi.org/10.1002/app.11160
  19. Kim, H.S. and Hahn, H.T. (2011), "Graphite fiber composites interlayered with single-walled carbon nanotubes", J. Compos. Mater., 45(10), 1109-1120. https://doi.org/10.1177/0021998311402726
  20. Lafitte, M.H. and Bunsell, A.R. (1982), "The fatige behavior of Kevlar-29 fibers", J. Mater. Sci., 17(8), 2391-2397. https://doi.org/10.1007/BF00543749
  21. Lau, K.T., Lu, M., Lam, C.K., Cheung, H.Y., Sheng, F.L. and Li, H.L. (2005), "Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: The role of solvent for nanotube dispersion", Compos. Sci. Technol., 65(5), 719-725. https://doi.org/10.1016/j.compscitech.2004.10.005
  22. Liu, T.M., Zheng, Y.S. and Hu, J. (2011), "Surface modification of aramid fibers with novel chemical approach", Polym. Bull., 66(2), 259-275. https://doi.org/10.1007/s00289-010-0313-y
  23. Martone, A., Formicola, C., Piscitelli, F., Lavorgna, M., Zarrelli, M., Antonucci, V. and Giordano, M. (2012), "Thermo-mechanical characterization of epoxy nanocomposites with different carbon nanotube distributions obtained by solvent aided and direct mixing", eXPRESS. Polym. Lett., 6(7), 520-531. https://doi.org/10.3144/expresspolymlett.2012.56
  24. Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A. and Mohajeri, A. (2010), "Mechanical properties of multi-walled carbon nanotube/epoxy composites" Mater. Design., 31(9), 4202-4208. https://doi.org/10.1016/j.matdes.2010.04.018
  25. Moore, E.M., Ortiz, D.L, Marla, V.T, Shambaugh, R.L. and Grady, B.P. (2004), "Enhancing the strength of polypropylene fibers with carbon nanotubes", J. Appl. Polym. Sci., 93(6), 2926-2933. https://doi.org/10.1002/app.20703
  26. Miaudet, P., Badaire, S., Maugey, M., Derre, A., Pichot, V., Launois, P., Poulin, P. and Zakri, C. (2005), "Hot-Drawing of Single and Multiwall Carbon Nanotube Fibers for High Toughness and Alignment", Nano. Lett., 5(11), 2212-2215. https://doi.org/10.1021/nl051419w
  27. Nadler, M., Werner, J., Mahrholz, T., Riedel, U. and Hufenbach, W. (2009), "Effect of CNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites", Compos. Part. A-Appl. S., 40(6-7), 932-937. https://doi.org/10.1016/j.compositesa.2009.04.021
  28. O'Connor, I., Hayden, H., Coleman, J.N. and Gun'ko, Y.K. (2009a), "High-strength, high-toughness composite fibers by swelling Kevlar in nanotube suspensions", Small., 5(4), 466-469. https://doi.org/10.1002/smll.200801102
  29. O'Connor, I., Hayden, H., O'Connor, S., Coleman, J.N. and Gun'ko, Y.K. (2009b), "Polymer reinforcement with Kevlar-coated carbon nanotubes", J. Phys. Chem., 113(47), 20184-20192.
  30. Razal, J.M., Coleman, J.N., Munoz, E., Lund, B., Gogotsi, Y., Ye, H., Collins, S., Dalton, A.B. and Baughman, R.H. (2007), "Arbitrarily Shaped Fiber Assemblies from Spun Carbon Nanotube Gel Fibers", Adv. Funct. Mater., 17(15), 2918-2924. https://doi.org/10.1002/adfm.200700210
  31. Reis, P.N.B., Ferreira, J.A.M., Santos, P., Richardson, M.O.W. and Santos, J.B. (2012), "Impact response of Kevlar composites with filled epoxy matrix", Compos. Struct., 94(12), 3520-3528. https://doi.org/10.1016/j.compstruct.2012.05.025
  32. Sandler, J.K.W., Pegel, S., Cadek, M., Gojny, F., van Es, M., Lohmar, J., Blau, W.J., Schulte, K., Windle, A.H. and Shaffer, M.S.P. (2004), "A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres", Polymer., 45(6), 2001-2015. https://doi.org/10.1016/j.polymer.2004.01.023
  33. Taraghi, I., Fereidoon, A. and Taheri-Behrooz, F. (2014), "Low-velocity impact response of woven Kevlar/ epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low temperatures", Mater. Design., 53, 152-158. https://doi.org/10.1016/j.matdes.2013.06.051
  34. Thostenson, E.T., Ren. Z.F. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotube and their composites: A review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
  35. Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F. and Chou, T.W. (2002), "Carbon nanotube/carbon fiber hybrid multiscale composites", J. Appl. Phys., 91(9), 6034-6037. https://doi.org/10.1063/1.1466880
  36. Vaisman, L., Wagner, H.D. and Marom, G. (2006), "The role of surfactants in dispersion of carbon nanotubes", Adv. Colloid. Interfac., 128-130, 37-46. https://doi.org/10.1016/j.cis.2006.11.007
  37. Wang, Y., Shi, Z. and Yin, J. (2011), "Kevlar oligomer functionalized graphene for polymer composites", Polymer., 52(16), 3661-3670. https://doi.org/10.1016/j.polymer.2011.06.012
  38. Wong, E.W., Sheehan, P.E. and Lieber, C.M. (1977), "Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes", Science., 277(5334), 1971-1975.
  39. Yu, M., Lourie, O., Dyer, M.J., Kelly, T.F. and Ruoff, R.S. (2000), "Strength and breaking mechanism of multi walled carbon nanotubes under tensile load", Science., 287(5453), 637-640. https://doi.org/10.1126/science.287.5453.637
  40. Zhou, Y.X., Wu, P.X., Cheng, Z.Y., Ingram, J. and Jeelani, S. (2008), "Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube", eXPRESS. Polym. Lett., 2(1), 40-48. https://doi.org/10.3144/expresspolymlett.2008.6

Cited by

  1. Large deformation analysis of anisotropic rubber hose along cyclic path by homogenization and path interpolation methods vol.30, pp.2, 2016, https://doi.org/10.1007/s12206-016-0134-5
  2. Non-destructive evaluation of damage modes in nanocomposite foam-core sandwich panel subjected to low-velocity impact vol.103, 2016, https://doi.org/10.1016/j.compositesb.2016.08.009
  3. Finite element and micromechanical modeling for investigating effective material properties of polymer–matrix nanocomposites with microfiber, reinforced by CNT arrays vol.8, pp.3, 2016, https://doi.org/10.1007/s40091-016-0132-y
  4. Optimization of the fabrication conditions and effects of multi-walled carbon nanotubes on the tensile properties of various glass fibers/unsaturated polyester resin composites vol.0, pp.0, 2018, https://doi.org/10.1515/epoly-2018-0033
  5. Crack growth analysis of carbon nanotube reinforced polymer nanocomposite using extended finite element method pp.2041-2983, 2018, https://doi.org/10.1177/0954406218776034
  6. Assessing the Critical Multifunctionality Threshold for Optimal Electrical, Thermal, and Nanomechanical Properties of Carbon Nanotubes/Epoxy Nanocomposites for Aerospace Applications vol.6, pp.1, 2019, https://doi.org/10.3390/aerospace6010007
  7. Preparation and Study of the Mechanical Properties of Unsaturated Polyester Resin/Graphene Nanocomposite vol.291, pp.None, 2019, https://doi.org/10.4028/www.scientific.net/ssp.291.83
  8. Epoxy-Based Hybrid Structural Composites with Nanofillers: A Review vol.59, pp.28, 2020, https://doi.org/10.1021/acs.iecr.0c01711
  9. The Mechanical Properties of Kevlar Fabric/Epoxy Composites Containing Aluminosilicates Modified with Quaternary Ammonium and Phosphonium Salts vol.13, pp.17, 2020, https://doi.org/10.3390/ma13173726
  10. Development of Lightweight and High-Performance Ballistic Helmet Based on Poly(Benzoxazine-co-Urethane) Matrix Reinforced with Aramid Fabric and Multi-Walled Carbon Nanotubes vol.12, pp.12, 2020, https://doi.org/10.3390/polym12122897
  11. Impact Response of Aramid Fabric-Reinforced Polybenzoxazine/Urethane Composites Containing Multiwalled Carbon Nanotubes Used as Support Panel in Hard Armor vol.13, pp.16, 2014, https://doi.org/10.3390/polym13162779