Acknowledgement
Supported by : NSTIP
References
- Abu-Lebdeh, T.M. and Voyiadjis, G.Z. (1993), "Plasticity-damage model for concrete under cyclic multiaxial loading", J. Eng. Mech., 119(7), 1465-1484. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:7(1465)
- AlMousawi, M.M., Reid, S.R. and Deans, W.F. (1997), "The use of the split Hopkinson pressure bar techniques in high strain rate materials testing", Proc. Instn. Mech. Eng. Part C, 211(4), 273-292.
- Al-Salloum Y, Almusallam T, Ibrahim SM, Abbas H, Alsayed S. (2015), "Rate dependent behavior and modeling of concrete based on SHPB experiments", Cem. Concr. Comp., 55, 34-44. https://doi.org/10.1016/j.cemconcomp.2014.07.011
- Ansari, F. and Li, Q.B. (1998), "High-strength concrete subjected to triaxial compressive", ACI Mater. J., 95(6), 747-755.
- Barpi, F. (2004), "Impact behaviour of concrete: a computational approach", Eng. Fract. Mech., 71(15), 2197-2213. https://doi.org/10.1016/j.engfracmech.2003.11.007
- Bischoff, P.H. and Perry, S.H. (1991), "Compressive behaviour of concrete at high strain rates", Mater. Struct., 24, 425-450. https://doi.org/10.1007/BF02472016
- Bischoff, P.H. and Perry, S.H. (1995), "Impact behavior of plain concrete loaded in uniaxial compression", J. Eng. Mech., 121(6), 685-693. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:6(685)
- Cotsovos, D.M. and Pavlovic, M.N. (2008). "Numerical investigation of concrete subjected to compressive impact loading. Part 1: A fundamental explanation for the apparent strength gain at high loading rates", Comp. Struct., 86(1-2), 145-163. https://doi.org/10.1016/j.compstruc.2007.05.014
- Davies, E.D.H. and Hunter, S.C. (1963), "The dynamic compression testing of solids by the method of the split Hopkinson bar", J. Mech. Phys. Sol., 11(3), 155-179. https://doi.org/10.1016/0022-5096(63)90050-4
- Field, J.E., Walley, S.M., Proud, W.G., Goldrein, H.T. and Siviour, C.R. (2004), "Review of experimental techniques for high rate deformation and shock studies", Int. J. Impact Eng., 30(7), 725-775. https://doi.org/10.1016/j.ijimpeng.2004.03.005
- Forrestal, M.J., Wright, T.W. and Chen, W. (2007), "The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test", Int. J. Impact Eng., 34(3), 405-411. https://doi.org/10.1016/j.ijimpeng.2005.12.001
- Frew, D.J., Forrestal, M.J. and Chen, W. (2001), "A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials", Exp. Mech., 41(1), 40-46. https://doi.org/10.1007/BF02323102
- Frew, D.J., Forrestal, M.J. and Chen, W. (2002), "Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar", Exp. Mech., 42(1), 93-106. https://doi.org/10.1007/BF02411056
- Gama, B.A., Lopatnikov, S.L. and Gillespie Jr, J.W. (2004), "Hopkinson bar experimental technique: A critical review", Appl. Mech. Rev., 57(4), 223-250. https://doi.org/10.1115/1.1704626
- Gary, G. and Bailly, P. (1998), "Behaviour of quasi-brittle material at high strain rate-Experimental modeling", Eur. J. Mech. A/Sol., 17(3), 403-420. https://doi.org/10.1016/S0997-7538(98)80052-1
- Gorham, D.A. (1989), "Specimen inertia in high strain-rate compression", J. Phys. D: Appl. Phys., 22(12), 1888-1893. https://doi.org/10.1088/0022-3727/22/12/014
- Gorham, D.A. (1991), "The effect of specimen dimensions on high strain rate compression measurements of copper", J. Phys. D: Appl. Phys., 24(8), 1489-1492. https://doi.org/10.1088/0022-3727/24/8/041
- Gray, G.T. (2000), "Classic Split-Hopkinson pressure bar testing", Mechanical Testing and Evaluation, Metals Handbook, American Society for Metals, Materials Park, OH, USA. 8, 462-476.
- Hao, Y., Hao, H. and Li, Z.X. (2010), "Numerical analysis of lateral inertial confinement effects on impact test of concrete compressive material properties", Int. J. Prot. Struct., 1(1), 145-167. https://doi.org/10.1260/2041-4196.1.1.145
- Imran, I. and Pantazopoulou, S.J. (1996), "Experimental study of plain concrete under triaxial stress", ACI Mater. J., 93(6), 589-601.
- Janach, W. (1976), "The role of bulking in brittle failure of rocks under rapid compression", Int. J. Rock. Mech. Mining. Sci. Geomech. Abstr., 13(6), 177-186. https://doi.org/10.1016/0148-9062(76)91284-5
- Katayama, M., Itoh, M., Tamura, S., Beppu, M. and Ohno, T. (2007), "Numerical analysis method for the RC and geological structures subjected to extreme loading by energetic materials", Int. J. Impact. Eng., 34(9), 1546-1561. https://doi.org/10.1016/j.ijimpeng.2006.10.013
- Kolsky, H. (1949), "An investigation of the mechanical properties of materials at very high rates of loading", Proc. Royal. Soc. Lond. B, 62, 676-700. https://doi.org/10.1088/0370-1301/62/11/302
- Kolsky, H. (1963), Stress Waves in Solids, Dover Publications Inc. New York, NY, USA.
- Kotsovos, M.D., Pavlovic, M.N. and Cotsovos, D.M. (2008), "Characteristic features of concrete behaviour: Implications for the development of an engineering finite-element tool", Comp. Concr., 5(3), 243-260. https://doi.org/10.12989/cac.2008.5.3.243
- Li, Q.M. and Meng, H. (2003), "About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test", Int. J. Sol. Struct., 40(2), 343-360. https://doi.org/10.1016/S0020-7683(02)00526-7
- Li, Q.M., Lu, Y.B. and Meng, H. (2009), "Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests, part II: numerical simulations", Int. J. Impact. Eng., 36(12), 1335-1345. https://doi.org/10.1016/j.ijimpeng.2009.04.010
- Malinowski, J.Z. and Klepaczko, J.R. (1986), "A unified analytic and numerical approach to specimen behaviour in the split-Hopkinson pressure bar", Int. J. Mech. Sci., 28(6), 381-391. https://doi.org/10.1016/0020-7403(86)90057-3
- Mu, Z.C., Dancygier, A.N., Zhang, W. and Yankelevsky, D.Z. (2012), "Revisiting the dynamic compressive behavior of concrete-like materials", Int. J. Impact. Eng., 49, 91-102. https://doi.org/10.1016/j.ijimpeng.2012.05.002
- Murray, Y.D. (2007), "Users manual for LS_DYNA concrete material Model 159", Report FHWA-HRT-05-062 Fed. Highway Admin., USA.
- Murray, Y.D., AbuOdeh, A. and Bligh, R. (2007), Evaluation of Concrete Material Model 159, Report FHWA-HRT-05-063 Fed. Highway Admin., USA.
- Polanco-Loria, M., Hopperstad, O.S., Borvik, T. and Berstad, T. (2008), "Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model", Int. J. Impact. Eng., 35(5), 290-303. https://doi.org/10.1016/j.ijimpeng.2007.03.001
- Rossi, P. (1991), "A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates", Mat. Struct., 24(6), 422-424. https://doi.org/10.1007/BF02472015
- Samanta, S.K. (1971), "Dynamic deformation of aluminium and copper at elevated temperatures", J. Mech. Phys. Sol., 19(3), 117-122. https://doi.org/10.1016/0022-5096(71)90023-8
- Sfer, D., Carol, I., Gettu, R. and Etse, G. (2002), "Study of the behavior of concrete under triaxial compression", J. Eng. Mech., 128(2), 156-163. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(156)
- Tham, C.Y. (2006), "Numerical and empirical approach in predicting the penetration of a concrete target by an ogive-nosed projectile", Finite Elem. Anal. Des., 42(14-15), 1258-1268. https://doi.org/10.1016/j.finel.2006.06.011
- Zhang, M., Li, Q.M., Huang, F.L., Wu, H.J. and Lu, Y.B. (2010), "Inertia-induced radial confinement in an elastic tubular specimen subjected to axial strain acceleration", Int. J. Impact Eng., 37(4), 459-464. https://doi.org/10.1016/j.ijimpeng.2009.09.009
- Zhang, M., Wu, H.J., Li, Q.M. and Huang, F.L. (2009), "Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests part I: experiments", Int. J. Impact. Eng., 36(12), 1327-1334. https://doi.org/10.1016/j.ijimpeng.2009.04.009
Cited by
- Strain Rate Dependent Behavior and Modeling for Compression Response of Hybrid Fiber Reinforced Concrete vol.13, pp.9, 2016, https://doi.org/10.1590/1679-78252717
- A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete vol.103, 2017, https://doi.org/10.1016/j.ijimpeng.2017.01.011