References
- Andrade, C., Alonso, C. and Sarria, J. (2002), "Corrosion rate evaluation in concrete structures exposed to atmosphere", Cement Concrete Comp., 24(1), 55-64. https://doi.org/10.1016/S0958-9465(01)00026-9
- Andrade, C., Sarria, J. and Alonso, C. (1999), "Relative humidity in the interior of concrete exposed to natural and artificial weathering", Cement Concrete Res., 29(8), 1249-1259. https://doi.org/10.1016/S0008-8846(99)00123-4
- Schiessl, P. (1988), Corrosion of steel in concrete, Report of the technical committee 60-CSC RILEM, Chapman and Hall, London and New York.
- Bazant, Z.P. and Najjar, L.J. (1972), "Nonlinear water diffusion in non saturated concrete", Mater. Struct., 5(1), 3-20.
- Bazant, Z.P. and Najjar, L.J. (1971), "Drying of concrete as a non linear diffusion problem", Cement Concrete Res., 1(5), 461-473. https://doi.org/10.1016/0008-8846(71)90054-8
- Blocken, B. and Carmeliet, C. (2004), "A review of rain driven wind research in building science", J. Wind Eng Ind. Aerod., 92(13), 1079-1130. https://doi.org/10.1016/j.jweia.2004.06.003
- Broomfield, J.P. (2007), Corrosion of steel in concrete: understanding, investigation and repair. 2nd ed., Taylor & Francis, London, England and New York, USA.
- Cano-Barrita, P.F.de.J., Balcom, B.J., Bremner, T.W., MacMillan, M.B. and Langley, W.S. (2004), "Moisture distribution in drying ordinary and high performance concrete cured in a simulated hot dry climate", Mater. Struct., 37(8), 522-531. https://doi.org/10.1007/BF02481576
- de Beer, F.C., Strydom, W.J. and Griesel, E.J. (2004), "The drying process of concrete: a neuron radiography study", Appl. Radiat. Isotopes, 61(4), 617-623. https://doi.org/10.1016/j.apradiso.2004.03.087
- Espinosa, R.M. and Franke, L. (2006), "Inkbottle pore-method: prediction of hygroscopic water content in hardened cement paste at variable climatic conditions", Cement Concrete Res., 36 (10), 1954-1968. https://doi.org/10.1016/j.cemconres.2006.06.011
- Gawin, D., Pesavento, F. and Schrefler, B.A. (2006a), "Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena", Int. J. Numer. Meth. Eng., 67(3), 299-331. https://doi.org/10.1002/nme.1615
- Gawin, D., Pesavento, F. and Schrefler, B.A. (2006b), "Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part II: Shrinkage and Creep of Concrete", Int. J. Numer. Meth. Eng., 67(3), 332-363. https://doi.org/10.1002/nme.1636
- Hall, C. (1994), "Barrier performance of concrete: a review of fluid transport theory", Mater. Struct., 27 (5), 291-306. https://doi.org/10.1007/BF02473048
- Hall, C. (1989), "Water sorptivity of mortars and concretes: a review", Mag. Concrete Res., 41 (147), 51-61. https://doi.org/10.1680/macr.1989.41.147.51
- Hall, C. & Hoff, W.D. (2002), Water transport in brick, stone and concrete, Taylor & Francis, London, England and New York, USA.
- Hall, C. and Kalimeris, A.N. (1982), "Water movement in porous building materials - V. Absorption and shedding of rain by building surfaces", Build. Environ., 17(4), 257-262. https://doi.org/10.1016/0360-1323(82)90018-X
- Hall, C., Hoff, W.D. and Nixon, M.R. (1984), "Water movement in porous building materials - VI. Evaporation and drying in brick and block materials", Build. Environ., 19 (1), 13-20. https://doi.org/10.1016/0360-1323(84)90009-X
- Hanson, J.A. (1968), "Effects of curing and drying environments on splitting tensile strength", ACI Mater. J., 65(7), 535-543.
- Hillel, D. (1973), Soil and Water - Physical Principles and Processes, Academic Press, New York, USA and London, England.
- IS 8112 (1989), Specification for 43 Grade Ordinary Portland Cement, Bureau of Indian Standards, New Delhi, India.
- Isgor, O.B. and Razaqpur, A.G. (2004), "Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures", Cement Concrete Comp., 26 (1), 57-73. https://doi.org/10.1016/S0958-9465(02)00125-7
- Ishida, T., Maekawa, K. and Kishi, T. (2007), "Enhanced modelling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history", Cement Concrete Res., 37 (4), 565-578. https://doi.org/10.1016/j.cemconres.2006.11.015
- ISO 15927-3 (2009), Hydrothermal performance of buildings - Calculation and presentation of climatic data - Part 3, Calculation of a driving rain index for vertical surfaces from hourly wind and rain data. DIN, Germany.
- Ju, S.H. and Kung, K.J.S. (1997), "Mass types, element orders and solution schemes for the Richard's equation", Comput. Geosci., 23(2), 175-187. https://doi.org/10.1016/S0098-3004(97)85440-4
- Kondraivebdhan, B. and Bhattacharjee, B. (2010), "Effect of age and water-cement ratio on size dispersion of pores in ordinary portland cement paste", ACI Mater. J., 107 (2), 147-154.
- Kondraivendhan, B. (2010), "Influence of w/c ratio and age on pore size distribution of OPC and fly ash pastes and mortars", Ph.D. Dissertation, Indian Institute of Technology Delhi, New Delhi.
- Lacy, R.E. (1977), Climate and building in Britain, HMSO, London.
- Leech, C., Lockington, D. and Dux, P. (2003), "Unsaturated diffusivity functions for concrete derived from NMR images", Mater. Struct. 36 (6), 413-418. https://doi.org/10.1007/BF02481067
- Li, C., Li, K. and Chen, Z. (2008a), "Numerical analysis of moisture influential depth in concrete and its application in durability design", Tsinghua Science and Technology, 13(1), 7-12. https://doi.org/10.1016/S1007-0214(08)70119-6
- Li, C., Li, K. and Chen, Z. (2008b), "Numerical analysis of moisture influential depth in concrete during drying-wetting cycles", Tsinghua Sci. Technol., 13(5), 696-701. https://doi.org/10.1016/S1007-0214(08)70113-5
- Lin, S.H. (1992), "Nonlinear water diffusion in unsaturated porous solid materials", Int. J. Engng. Sci., 30(12), 1677-1682. https://doi.org/10.1016/0020-7225(92)90087-W
- Lopez, W. and Gonzalez, J.A. (1993), "Influence of the degree of pore saturation on the resistivity of concrete and the corrosion rate of steel reinforcement", Cement Concrete Res., 23 (2), 368-376. https://doi.org/10.1016/0008-8846(93)90102-F
- Lyklema, J. (1991), Fundamentals of Interface and Colloid Science: Liquid-Fluid Interfaces, Academic Press, London, England.
- Neville, A.M. and Brooks, J.J. (1987), Concrete Technology, Pearson Education Ltd., New Delhi, Delhi, India.
- Nilsson, L. (1996), "Interaction between microclimate and concrete - a prerequisite for deterioration", Const. Build. Mater., 10 (5), 301-308. https://doi.org/10.1016/0950-0618(95)00046-1
- Oteh, U.U. (1985), "Equations for psychrometric calculations", Int. J. Refrig., 8(2), 116-117. https://doi.org/10.1016/0140-7007(85)90084-2
- Palyvos, J.A. (2008), "A survey of wind convection coefficient relations for building envelope energy systems' modelling", Appl. Therm. Eng., 28 (8-9), 801-808. https://doi.org/10.1016/j.applthermaleng.2007.12.005
- Parrott, L.J. (1990), "Damage caused by carbonation of reinforced concrete", Mater. Struct., 23 (3), 230-234. https://doi.org/10.1007/BF02473023
- Patil, S.G. and Bhattacharjee, B. (2008), "Size and volume relationship of pore for construction materials", J. Mater. Civil Eng., 20 (6), 410-418. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:6(410)
- Pel, L. (1995), "Moisture transport in porous building materials", Ph.D. Dissertation, Technische Universiteit Eindhoven, Netherlands.
- Reddy, J.N. (2005), An Introduction to the Finite Element Method. 3rd ed., TMH, New Delhi, Delhi, India.
- Ryu, D.W., Ko, J.W. and Noguchi, T. (2011), "Effects of simulated environmental conditions on the internal relative humidity and relative moisture content distribution of exposed concrete", Cement Concrete Comp. 33 (1), 142-153. https://doi.org/10.1016/j.cemconcomp.2010.09.009
- Saetta, A.V., Schrefler, B.A. and Vitaliani, R.V. (1993), "The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials", Cement Concrete Res., 23 (4), 761-772. https://doi.org/10.1016/0008-8846(93)90030-D
- Saetta, A.V., Schrefler, B.A. and Vitaliani, R.V. (1995), "2-D model for carbonation and moisture/heat flow in porous materials", Cement Concrete Res., 25 (8), 1703-1712. https://doi.org/10.1016/0008-8846(95)00166-2
- Selih, J., Sousa, A.C.M. and Bremner, T.W. (1996), "Moisture transport in initially fully saturated concrete during drying", Transport Porous Med., 24 (1), 81-106. https://doi.org/10.1007/BF00175604
- Smith, J.M., Van Ness H.C. and Abbott, M.M. (2005), Introduction to Chemical Engineering Thermodynamics. 7th ed., TMH, New York, NY, USA.
- Terrill, J.M., Richardson, M. and Selby, A.R. (1986), "Non-linear moisture profiles and shrinkage in concrete members", Mag. Concrete Res., 38 (137), 220-225. https://doi.org/10.1680/macr.1986.38.137.220
- Thomas, J.J., Jennings, H.M. and Andrew, J.A. (1999), "The surface area of hardened cement paste as measured by various techniques", Concrete Science Eng., 1(1), 45-64.
- Toei, R. (1996), "Theoretical fundamentals of drying operation", Dry. Technol., 14 (1), 1-194. https://doi.org/10.1080/07373939608917089
- West, R. and Holmes, N. (2001), "Experimental investigation of moisture migration in concrete", Proceedings of the Colloquium on Concrete Research in Ireland, NUI, Galway, September.
- Wong, S.F., Wee, T.H., Swaddinwudhipong, S. and Lee, S.L. (2001), "Study of water movement in concrete", Mag. Concrete Res. 53 (3), 205-220. https://doi.org/10.1680/macr.2001.53.3.205
- Zhang, J., Gao, Y. and Han, Y. (2012), "Interior humidity of concrete under dry-wet cycles", J. Mater. Civil Eng., 24(3), 289-298. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000382
- Yeo, T.L., Cox, M.A.C., Boswell, L.F., Sun, T. and Grattan, K.T.V. (2006a), "Optical fibre sensors for monitoring ingress of moisture in structural concrete", Rev. Sci. Instrum., 77(5), 055108-055108-7. https://doi.org/10.1063/1.2200744
- Yeo, T.L., Cox, M.A.C., Boswell, L.F., Sun, T. and Grattan, K.T.V. (2006b), "Monitoring ingress of moisture in structural concrete using a novel optical-based sensor approach", J. Phys. Conf. Ser., 45(1), 186-192. https://doi.org/10.1088/1742-6596/45/1/025
- Norris, A., Saafi, M. and Romine, P. (2008), "Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors", Const. Build. Mater., 22(2), 111-120. https://doi.org/10.1016/j.conbuildmat.2006.05.047
- Zhang, P., Wittmann, F.H., Zhao, T., Lehmann, E.H. and Vontobel, P. (2011). "Neutron radiography, a powerful method to determine time-dependent moisture distributions in concrete", Nucl. Eng. Des., 241(12), 4758-4766. https://doi.org/10.1016/j.nucengdes.2011.02.031
- Stewart, M.G., Wang, X. and Nguyen, M.N. (2011), "Climate change impact and risks of concrete infrastructure deterioration", Eng. Struct., 33(4), 1326-1337. https://doi.org/10.1016/j.engstruct.2011.01.010
- Talukdar, S. and Banthia, N. (2013), "Carbonation in concrete infrastructure in the context of global climate change: Development of a service lifespan model", Const. Build. Mater., 40(2013), 775-782. https://doi.org/10.1016/j.conbuildmat.2012.11.026
Cited by
- A simple practical method for determination of moisture transfer coefficient of mature concrete using a combined experimental-numerical approach vol.18, pp.3, 2016, https://doi.org/10.12989/cac.2016.18.3.367
- Localisation of embedded water drop in glass composite using THz spectroscopy vol.21, pp.6, 2018, https://doi.org/10.12989/sss.2018.21.6.751