DOI QR코드

DOI QR Code

Apolipoprotein E in Synaptic Plasticity and Alzheimer's Disease: Potential Cellular and Molecular Mechanisms

  • Kim, Jaekwang (Department of Neuroscience, Mayo Clinic College of Medicine) ;
  • Yoon, Hyejin (Department of Neuroscience, Mayo Clinic College of Medicine) ;
  • Basak, Jacob (Department of Neurology, Hope Center for Neurological Disorders, Washington University School of Medicine) ;
  • Kim, Jungsu (Department of Neuroscience, Mayo Clinic College of Medicine)
  • Received : 2014.09.11
  • Accepted : 2014.09.14
  • Published : 2014.11.30

Abstract

Alzheimer's disease (AD) is clinically characterized with progressive memory loss and cognitive decline. Synaptic dysfunction is an early pathological feature that occurs prior to neurodegeneration and memory dysfunction. Mounting evidence suggests that aggregation of amyloid-${\alpha}$ ($A{\alpha}$) and hyperphosphorylated tau leads to synaptic deficits and neurodegeneration, thereby to memory loss. Among the established genetic risk factors for AD, the ${\varepsilon}4$ allele of apolipoprotein E (APOE) is the strongest genetic risk factor. We and others previously demonstrated that apoE regulates $A{\alpha}$ aggregation and clearance in an isoform-dependent manner. While the effect of apoE on $A{\alpha}$ may explain how apoE isoforms differentially affect AD pathogenesis, there are also other underexplored pathogenic mechanisms. They include differential effects of apoE on cerebral energy metabolism, neuroinflammation, neurovascular function, neurogenesis, and synaptic plasticity. ApoE is a major carrier of cholesterols that are required for neuronal activity and injury repair in the brain. Although there are a few conflicting findings and the underlying mechanism is still unclear, several lines of studies demonstrated that apoE4 leads to synaptic deficits and impairment in long-term potentiation, memory and cognition. In this review, we summarize current understanding of apoE function in the brain, with a particular emphasis on its role in synaptic plasticity and the underlying cellular and molecular mechanisms, involving low-density lipoprotein receptor-related protein 1 (LRP1), syndecan, and LRP8/ApoER2.

Keywords

References

  1. Bales, K.R., Verina, T., Dodel, R.C., Du, Y., Altstiel, L., Bender, M., Hyslop, P., Johnstone, E.M., Little, S.P., Cummins, D.J., et al. (1997). Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat. Genet. 17, 263-264. https://doi.org/10.1038/ng1197-263
  2. Basak, J.M., and Kim, J. (2010). Differential effects of ApoE isoforms on dendritic spines in vivo: linking an Alzheimer's disease risk factor with synaptic alterations. J. Neurosci. 30, 4526-4527. https://doi.org/10.1523/JNEUROSCI.0505-10.2010
  3. Bien-Ly, N., Gillespie, A.K., Walker, D., Yoon, S.Y., and Huang, Y. (2012). Reducing human apolipoprotein E levels attenuates age-dependent A accumulation in mutant human amyloid precursor protein transgenic mice. J. Neurosci. 32, 4803-4811. https://doi.org/10.1523/JNEUROSCI.0033-12.2012
  4. Bour, A., Grootendorst, J., Vogel, E., Kelche, C., Dodart, J.C., Bales, K., Moreau, P.H., Sullivan, P.M., and Mathis, C. (2008). Middleaged human apoE4 targeted-replacement mice show retention deficits on a wide range of spatial memory tasks. Behav. Brain Res. 193, 174-182. https://doi.org/10.1016/j.bbr.2008.05.008
  5. Bourne, J.N., and Harris, K.M. (2008). Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci. 31, 47-67. https://doi.org/10.1146/annurev.neuro.31.060407.125646
  6. Buttini, M., Orth, M., Bellosta, S., Akeefe, H., Pitas, R.E., Wyss-Coray, T., Mucke, L., and Mahley, R.W. (1999). Expression of human apolipoprotein E3 or E4 in the brains of Apoe-/- mice: isoform-specific effects on neurodegeneration. J. Neurosci. 19, 4867-4880.
  7. Cambon, K., Davies, H.A., and Stewart, M.G. (2000). Synaptic loss is accompanied by an increase in synaptic area in the dentate gyrus of aged human apolipoprotein E4 transgenic mice. Neuroscience 97, 685-692. https://doi.org/10.1016/S0306-4522(00)00065-8
  8. Castellano, J.M., Kim, J., Stewart, F.R., Jiang, H., DeMattos, R.B., Patterson, B.W., Fagan, A.M., Morris, J.C., Mawuenyega, K.G., Cruchaga, C., et al. (2011). Human apoE isoforms differentially regulate brain amyloid-$\beta$ peptide clearance. Sci. Transl. Med. 3, 89ra57.
  9. Chai, X., Forster, E., Zhao, S., Bock, H.H., and Frotscher, M. (2009). Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J. Neurosci. 29, 288-299. https://doi.org/10.1523/JNEUROSCI.2934-08.2009
  10. Chang, S., ran Ma, T., Miranda, R.D., Balestra, M.E., Mahley, R.W., and Huang, Y. (2005). Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc. Natl. Acad. Sci. USA 102, 18694-18699. https://doi.org/10.1073/pnas.0508254102
  11. Chen, Y., Durakoglugil, M.S., Xian, X. and Herz, J. (2010). ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc. Natl. Acad. Sci. USA 107, 12011-12016. https://doi.org/10.1073/pnas.0914984107
  12. Cingolani, L.A., and Goda, Y. (2008). Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 9, 344-356. https://doi.org/10.1038/nrn2373
  13. Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L., and Pericak-Vance, M.A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921-923. https://doi.org/10.1126/science.8346443
  14. Cramer, P.E., Cirrito, J.R., Wesson, D.W., Lee, C.Y., Karlo, J.C., Zinn, A.E., Casali, B.T., Restivo, J.L., Goebel, W.D., James, M.J., et al. (2012). ApoE-directed therapeutics rapidly clear betaamyloid and reverse deficits in AD mouse models. Science 335, 1503-1506. https://doi.org/10.1126/science.1217697
  15. D'Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D.S., Sheldon, M., and Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24, 471-479. https://doi.org/10.1016/S0896-6273(00)80860-0
  16. DeMattos, R.B., Curtiss, L.K., and Williams, D.L. (1998). A minimally lipidated form of cell-derived apolipoprotein E exhibits isoform-specific stimulation of neurite outgrowth in the absence of exogenous lipids or lipoproteins. J. Biol. Chem. 273, 4206-4212. https://doi.org/10.1074/jbc.273.7.4206
  17. Dietschy, J.M., and Turley, S.D. (2004). Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J. Lipid Res. 45, 1375-1397. https://doi.org/10.1194/jlr.R400004-JLR200
  18. Dumanis, S.B., Tesoriero, J.A., Babus, L.W., Nguyen, M.T., Trotter, J.H., Ladu, M.J., Weeber, E.J., Turner, R.S., Xu, B., Rebeck, G.W., et al. (2009). ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J. Neurosci. 29, 15317-15322. https://doi.org/10.1523/JNEUROSCI.4026-09.2009
  19. Ethell, I.M., and Yamaguchi, Y. (1999). Cell surface heparan sulfate proteoglycan syndecan-2 induces the maturation of dendritic spines in rat hippocampal neurons. J. Cell Biol. 144, 575-586. https://doi.org/10.1083/jcb.144.3.575
  20. Ethell, I.M., Irie, F., Kalo, M.S., Couchman, J.R., Pasquale, E.B., and Yamaguchi, Y. (2001). EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron 31, 1001-1013. https://doi.org/10.1016/S0896-6273(01)00440-8
  21. Fagan, A.M., Bu, G., Sun, Y., Daugherty, A., and Holtzman, D.M. (1996). Apolipoprotein E-containing high density lipoprotein promotes neurite outgrowth and is a ligand for the low density lipoprotein receptor-related protein. J. Biol. Chem. 271, 30121-30125. https://doi.org/10.1074/jbc.271.47.30121
  22. Farrer, L.A., Cupples, L.A., Haines, J.L., Hyman, B., Kukull, W.A., Mayeux, R., Myers, R.H., Pericak-Vance, M.A., Risch, N., and van Duijn, C.M. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278, 1349-1356. https://doi.org/10.1001/jama.1997.03550160069041
  23. Golde, T.E., Petrucelli, L., and Lewis, J. (2010). Targeting Abeta and tau in Alzheimer's disease, an early interim report. Exp. Neurol. 223, 252-266. https://doi.org/10.1016/j.expneurol.2009.07.035
  24. Gordon, I., Grauer, E., Genis, I., Sehayek, E., and Michaelson, D.M. (1995). Memory deficits and cholinergic impairments in apolipoprotein E-deficient mice. Neurosci. Lett. 199, 1-4. https://doi.org/10.1016/0304-3940(95)12006-P
  25. Grootendorst, J., Bour, A., Vogel, E., Kelche, C., Sullivan, P.M., Dodart, J.-C., Bales, K., and Mathis, C. (2005) Human apoE targeted replacement mouse lines: h-apoE4 and h-apoE3 mice differ on spatial memory performance and avoidance behavior. Behav. Brain Res. 159, 1-14. https://doi.org/10.1016/j.bbr.2004.09.019
  26. Gu, J., Firestein, B.L., and Zheng, J.Q. (2008). Microtubules in dendritic spine development. J. Neurosci. 28, 12120-12124. https://doi.org/10.1523/JNEUROSCI.2509-08.2008
  27. Haass, C., and Selkoe, D.J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid betapeptide. Nat. Rev. Mol. Cell Biol. 8, 101-112.
  28. Hartman, R.E., Wozniak, D.F., Nardi, A., Olney, J.W., Sartorius, L., and Holtzman, D.M. (2001). Behavioral phenotyping of GFAPApoE3 and -ApoE4 transgenic mice: ApoE4 mice show profound working memory impairments in the absence of Alzheimer's-like neuropathology. Exp. Neurol. 170, 326-344. https://doi.org/10.1006/exnr.2001.7715
  29. Hoe, H.S., Freeman, J., and Rebeck, G.W. (2006). Apolipoprotein E decreases tau kinases and phospho-tau levels in primary neurons. Mol. Neurodegener. 1, 18. https://doi.org/10.1186/1750-1326-1-18
  30. Holtzman, D.M., Pitas, R.E., Kilbridge, J., Nathan, B., Mahley, R.W., Bu, G., and Schwartz, A.L. (1995). Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. Proc. Natl. Acad. Sci. USA 92, 9480-9484. https://doi.org/10.1073/pnas.92.21.9480
  31. Hu, X., Viesselmann, C., Nam, S., Merriam, E., and Dent, E.W. (2008). Activity-dependent dynamic microtubule invasion of dendritic spines. J. Neurosci. 28, 13094-13105. https://doi.org/10.1523/JNEUROSCI.3074-08.2008
  32. Hudry, E., Dashkoff, J., Roe, A.D., Takeda, S., Koffie, R.M., Hashimoto, T., Scheel, M., Spires-Jones, T., Arbel-Ornath, M., Betensky, R., et al. (2013). Gene transfer of human apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. Sci. Transl. Med. 5, 212ra161. https://doi.org/10.1126/scitranslmed.3007000
  33. Jaworski, J., Kapitein, L.C., Gouveia, S.M., Dortland, B.R., Wulf, P.S., Grigoriev, I., Camera, P., Spangler, S.A., Di Stefano, P., Demmers, J., et al. (2009). Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61, 85-100. https://doi.org/10.1016/j.neuron.2008.11.013
  34. Ji, Z.S., Pitas, R.E., and Mahley, R.W. (1998). Differential cellular accumulation/retention of apolipoprotein E mediated by cell surface heparan sulfate proteoglycans. Apolipoproteins E3 and E2 greater than e4. J. Biol. Chem. 273, 13452-13460. https://doi.org/10.1074/jbc.273.22.13452
  35. Ji, Y., Gong, Y., Gan, W., Beach, T., Holtzman, D.M., and Wisniewski, T. (2003). Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer's disease patients. Neuro Sci. 122, 305-315.
  36. Jiang, Q., Lee, C.Y., Mandrekar, S., Wilkinson, B., Cramer, P., Zelcer, N., Mann, K., Lamb, B., Willson, T.M., Collins, J.L., et al. (2008). ApoE promotes the proteolytic degradation of Abeta. Neuron 58, 681-693. https://doi.org/10.1016/j.neuron.2008.04.010
  37. Kim, J., Onstead, L., Randle, S., Price, R., Smithson, L., Zwizinski, C., Dickson, D.W., Golde, T., and McGowan, E. (2007). Abeta40 inhibits amyloid deposition in vivo. J. Neurosci. 27, 627-633. https://doi.org/10.1523/JNEUROSCI.4849-06.2007
  38. Kim, J., Basak, J.M., and Holtzman, D.M. (2009a). The role of apolipoprotein E in Alzheimer's disease. Neuron 63, 287-303. https://doi.org/10.1016/j.neuron.2009.06.026
  39. Kim, J., Castellano, J.M., Jiang, H., Basak, J.M., Parsadanian, M., Pham, V., Mason, S.M., Paul, S.M., and Holtzman, D.M. (2009b). Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular A[beta] clearance. Neuron 64, 632-644. https://doi.org/10.1016/j.neuron.2009.11.013
  40. Kim, J., Jiang, H., Park, S., Eltorai, A., Stewart, F., Yoon, H., Basak, J.M., Finn, M.B., and Holtzman, D.M. (2011). Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-beta amyloidosis. J. Neurosci. 31, 18007-18012. https://doi.org/10.1523/JNEUROSCI.3773-11.2011
  41. Kim, J., Eltorai, A.E., Jiang, H., Liao, F., Verghese, P.B., Kim, J., Stewart, F.R., Basak, J.M., and Holtzman, D.M. (2012a). AntiapoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Abeta amyloidosis. J. Exp. Med. 209, 2149-2156. https://doi.org/10.1084/jem.20121274
  42. Kim, J., Yoon, H., Ramírez, C., Lee, S., Hoe, H., Fernandez-Hernando, C., and Kim, J. (2012b). miR-106b impairs cholesterol efflux and increases A levels by repressing ABCA1 expression. Exp. Neurol. 235, 476-483. https://doi.org/10.1016/j.expneurol.2011.11.010
  43. Kinnunen, T., Raulo, E., Nolo, R., Maccarana, M., Lindahl, U., and Rauvala, H. (1996). Neurite outgrowth in brain neurons induced by heparin-binding growth-associated molecule (HB-GAM) depends on the specific interaction of HB-GAM with heparan sulfate at the cell surface. J. Biol. Chem. 271, 2243-2248. https://doi.org/10.1074/jbc.271.4.2243
  44. Kinnunen, T., Kaksonen, M., Saarinen, J., Kalkkinen, N., Peng, H.B., and Rauvala, H. (1998). Cortactin-Src kinase signaling pathway is involved in N-syndecan-dependent neurite outgrowth. J. Biol. Chem. 273, 10702-10708. https://doi.org/10.1074/jbc.273.17.10702
  45. Kitamura, H.W., Hamanaka, H., Watanabe, M., Wada, K., Yamazaki, C., Fujita, S.C., Manabe, T., and Nukina, N. (2004). Age-dependent enhancement of hippocampal long-term potentiation in knock-in mice expressing human apolipoprotein E4 instead of mouse apolipoprotein E. Neurosci. Lett. 369, 173-178. https://doi.org/10.1016/j.neulet.2004.07.084
  46. Kornecook, T.J., McKinney, A.P., Ferguson, M.T., and Dodart, J.C. (2010). Isoform-specific effects of apolipoprotein E on cognitive performance in targeted-replacement mice overexpressing human APP. Genes Brain Behav. 9, 182-192. https://doi.org/10.1111/j.1601-183X.2009.00545.x
  47. Kowal, R.C., Herz, J., Weisgraber, K.H., Mahley, R.W., Brown, M.S., and Goldstein, J.L. (1990). Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J. Biol. Chem. 265, 10771-10779.
  48. Kramar, E.A., Chen, L.Y., Brandon, N.J., Rex, C.S., Liu, F., Gall, C.M., and Lynch, G. (2009). Cytoskeletal changes underlie estrogen's acute effects on synaptic transmission and plasticity. J. Neurosci. 29, 12982-12993. https://doi.org/10.1523/JNEUROSCI.3059-09.2009
  49. Kuszczyk, M.A., Sanchez, S., Pankiewicz, J., Kim, J., Duszczyk, M., Guridi, M., Asuni, A.A., Sullivan, P.M., Holtzman, D.M., and Sadowski, M.J. (2013). Blocking the interaction between apolipoprotein E and Abeta reduces intraneuronal accumulation of Abeta and inhibits synaptic degeneration. Am. J. Pathol. 182, 1750-1768. https://doi.org/10.1016/j.ajpath.2013.01.034
  50. Lane-Donovan, C., Philips, Gary T., and Herz, J. (2014). More than cholesterol transporters: lipoprotein receptors in CNS function and neurodegeneration. Neuron 83, 771-787. https://doi.org/10.1016/j.neuron.2014.08.005
  51. Lanz, T.A., Carter, D.B., and Merchant, K.M. (2003). Dendritic spine loss in the hippocampus of young PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype. Neurobiol. Dis. 13, 246-253. https://doi.org/10.1016/S0969-9961(03)00079-2
  52. Liao, F., Hori, Y., Hudry, E., Bauer, A.Q., Jiang, H., Mahan, T.E., Lefton, K.B., Zhang, T.J., Dearborn, J.T., Kim, J., et al. (2014). Anti-ApoE antibody given after plaque onset decreases Abeta accumulation and improves brain function in a mouse model of Abeta amyloidosis. J. Neurosci. 34, 7281-7292. https://doi.org/10.1523/JNEUROSCI.0646-14.2014
  53. Libeu, C.P., Lund-Katz, S., Phillips, M.C., Wehrli, S., Hernaiz, M.J., Capila, I., Linhardt, R.J., Raffai, R.L., Newhouse, Y.M., Zhou, F., et al. (2001). New insights into the heparan sulfate proteoglycanbinding activity of apolipoprotein E. J. Biol. Chem. 276, 39138-39144. https://doi.org/10.1074/jbc.M104746200
  54. Mahley, R.W., and Huang, Y. (2012). Apolipoprotein e sets the stage: response to injury triggers neuropathology. Neuron 76, 871-885. https://doi.org/10.1016/j.neuron.2012.11.020
  55. Mak, A.C., Pullinger, C.R., Tang, L.F., Wong, J.S., Deo, R.C., Schwarz, J.M., Gugliucci, A., Movsesyan, I., Ishida, B.Y., Chu, C., et al. (2014). Effects of the absence of apolipoprotein E on lipoproteins, neurocognitive function, and retinal runction. JAMA Neurol. (in press).
  56. Mann, K.M., Thorngate, F.E., Katoh-Fukui, Y., Hamanaka, H., Williams, D.L., Fujita, S., and Lamb, B.T. (2004). Independent effects of APOE on cholesterol metabolism and brain Abeta levels in an Alzheimer disease mouse model. Hum. Mol. Genet. 13, 1959-1968. https://doi.org/10.1093/hmg/ddh199
  57. Masliah, E., Samuel, W., Veinbergs, I., Mallory, M., Mante, M., and Saitoh, T. (1997). Neurodegeneration and cognitive impairment in apoE-deficient mice is ameliorated by infusion of recombinant apoE. Brain Res. 751, 307-314. https://doi.org/10.1016/S0006-8993(96)01420-5
  58. McGowan, E., Pickford, F., Kim, J., Onstead, L., Eriksen, J., Yu, C., Skipper, L., Murphy, M.P., Beard, J., Das, P., et al. (2005). Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47, 191-199. https://doi.org/10.1016/j.neuron.2005.06.030
  59. Minami, S.S., Cordova, A., Cirrito, J.R., Tesoriero, J.A., Babus, L.W., Davis, G.C., Dakshanamurthy, S., Turner, R.S., Pak, D.T., Rebeck, G.W., et al. (2010). ApoE mimetic peptide decreases Abeta production in vitro and in vivo. Mol. Neurodegener. 5, 16. https://doi.org/10.1186/1750-1326-5-16
  60. Namba, Y., Tomonaga, M., Kawasaki, H., Otomo, E., and Ikeda, K. (1991). Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res. 541, 163-166. https://doi.org/10.1016/0006-8993(91)91092-F
  61. Narita, M., Bu, G., Holtzman, D.M., and Schwartz, A.L. (1997). The low-density lipoprotein receptor-related protein, a multifunctional apolipoprotein E receptor, modulates hippocampal neurite development. J. Neurochem. 68, 587-595.
  62. Nathan, B.P., Bellosta, S., Sanan, D.A., Weisgraber, K.H., Mahley, R.W., and Pitas, R.E. (1994). Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 264, 850-852. https://doi.org/10.1126/science.8171342
  63. Nathan, B.P., Jiang, Y., Wong, G.K., Shen, F., Brewer, G.J., and Struble, R.G. (2002). Apolipoprotein E4 inhibits, and apolipoprotein E3 promotes neurite outgrowth in cultured adult mouse cortical neurons through the low-density lipoprotein receptor-related protein. Brain Res. 928, 96-105. https://doi.org/10.1016/S0006-8993(01)03367-4
  64. Nichol, K., Deeny, S.P., Seif, J., Camaclang, K., and Cotman, C.W. (2009). Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice. Alzheimers Dement 5, 287-294. https://doi.org/10.1016/j.jalz.2009.02.006
  65. Niu, S., Yabut, O., and D'Arcangelo, G. (2008). The reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J. Neurosci. 28, 10339-10348. https://doi.org/10.1523/JNEUROSCI.1917-08.2008
  66. Osherovich, L. (2009). The APOE4 conundrum. SciBX 2, 1-3.
  67. Pankiewicz, J.E., Guridi, M., Kim, J., Asuni, A.A., Sanchez, S., Sullivan, P.M., Holtzman, D.M., and Sadowski, M.J. (2014). Blocking the apoE/Abeta interaction ameliorates Abeta-related pathology in APOE2 and 4 targeted replacement Alzheimer model mice. Acta Neuropathol. Commun. 2, 75.
  68. Penzes, P., and Jones, K.A. (2008). Dendritic spine dynamics--a key role for kalirin-7. Trends Neurosci. 31, 419-427. https://doi.org/10.1016/j.tins.2008.06.001
  69. Puttfarcken, P.S., Manelli, A.M., Falduto, M.T., Getz, G.S., and LaDu, M.J. (1997). Effect of apolipoprotein E on neurite outgrowth and beta-amyloid-induced toxicity in developing rat primary hippocampal cultures. J. Neurochem. 68, 760-769.
  70. Raber, J., Wong, D., Buttini, M., Orth, M., Bellosta, S., Pitas, R.E., Mahley, R.W., and Mucke, L. (1998). Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. Proc. Natl. Acad. Sci. USA 95, 10914-10919. https://doi.org/10.1073/pnas.95.18.10914
  71. Raber, J., Wong, D., Yu, G.Q., Buttini, M., Mahley, R.W., Pitas, R.E., and Mucke, L. (2000). Apolipoprotein E and cognitive performance. Nature 404, 352-354.
  72. Ramaswamy, G., Xu, Q., Huang, Y., and Weisgraber, K.H. (2005). Effect of domain interaction on apolipoprotein E levels in mouse brain. J. Neurosci. 25, 10658-10663. https://doi.org/10.1523/JNEUROSCI.1922-05.2005
  73. Rex, C.S., Gavin, C.F., Rubio, M.D., Kramar, E.A., Chen, L.Y., Jia, Y., Huganir, R.L., Muzyczka, N., Gall, C.M., and Miller, C.A. (2010). Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 67, 603-617. https://doi.org/10.1016/j.neuron.2010.07.016
  74. Riddell, D.R., Zhou, H., Atchison, K., Warwick, H.K., Atkinson, P.J., Jefferson, J., Xu, L., Aschmies, S., Kirksey, Y., Hu, Y., et al. (2008). Impact of Apolipoprotein E (ApoE) polymorphism on brain ApoE levels. J. Neurosci. 28, 11445-11453. https://doi.org/10.1523/JNEUROSCI.1972-08.2008
  75. Ruiz, J., Kouiavskaia, D., Migliorini, M., Robinson, S., Saenko, E.L., Gorlatova, N., Li, D., Lawrence, D., Hyman, B.T., Weisgraber, K.H., et al. (2005). The apoE isoform binding properties of the VLDL receptor reveal marked differences from LRP and the LDL receptor. J. Lipid Res. 46, 1721-1731. https://doi.org/10.1194/jlr.M500114-JLR200
  76. Sadowski, M., Pankiewicz, J., Scholtzova, H., Ripellino, J.A., Li, Y., Schmidt, S.D., Mathews, P.M., Fryer, J.D., Holtzman, D.M., Sigurdsson, E.M., et al. (2004). A synthetic peptide blocking the Apolipoprotein E/{beta}-amyloid binding mitigates {beta}-amyloid toxicity and fibril formation in vitro and reduces {beta}-amyloid plaques in transgenic mice. Am. J. Pathol. 165, 937-948. https://doi.org/10.1016/S0002-9440(10)63355-X
  77. Sadowski, M.J., Pankiewicz, J., Scholtzova, H., Mehta, P.D., Prelli, F., Quartermain, D., and Wisniewski, T. (2006). Blocking the apolipoprotein E/amyloid-{beta} interaction as a potential therapeutic approach for Alzheimer's disease. Proc. Natl. Acad. Sci. USA 103, 18787-18792. https://doi.org/10.1073/pnas.0604011103
  78. Selkoe, D.J. (2002). Alzheimer's disease is a synaptic failure. Science 298, 789-791. https://doi.org/10.1126/science.1074069
  79. Shankar, G.M., Bloodgood, B.L., Townsend, M., Walsh, D.M., Selkoe, D.J., and Sabatini, B.L. (2007). Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci. 27, 2866-2875. https://doi.org/10.1523/JNEUROSCI.4970-06.2007
  80. Shi, Y., Mantuano, E., Inoue, G., Campana, W.M., and Gonias, S.L. (2009). Ligand binding to LRP1 transactivates Trk receptors by a Src family kinase-dependent pathway. Sci. Signal. 2, ra18.
  81. Siegel, J.A., Haley, G.E., and Raber, J. (2012). Apolipoprotein E isoform-dependent effects on anxiety and cognition in female TR mice. Neurobiol. Aging 33, 345-358. https://doi.org/10.1016/j.neurobiolaging.2010.03.002
  82. Stanford, K.I., Bishop, J.R., Foley, E.M., Gonzales, J.C., Niesman, I.R., Witztum, J.L., and Esko, J.D. (2009). Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J. Clin. Invest. 119, 3236-3245.
  83. Strittmatter, W.J., Saunders, A.M., Goedert, M., Weisgraber, K.H., Dong, L.M., Jakes, R., Huang, D.Y., Pericak-Vance, M., Schmechel, D., and Roses, A.D. (1994). Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 11183-11186. https://doi.org/10.1073/pnas.91.23.11183
  84. Sun, Y., Wu, S., Bu, G., Onifade, M.K., Patel, S.N., LaDu, M.J., Fagan, A.M., and Holtzman, D.M. (1998). Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic mice: astrocytespecific expression and differing biological effects of astrocytesecreted apoE3 and apoE4 lipoproteins. J. Neurosci. 18, 3261-3272.
  85. Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., DeTeresa, R., Hill, R., Hansen, L.A. and Katzman, R. (1991). Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572-580. https://doi.org/10.1002/ana.410300410
  86. Teter, B., Xu, P.T., Gilbert, J.R., Roses, A.D., Galasko, D., and Cole, G.M. (1999). Human apolipoprotein E isoform-specific differences in neuronal sprouting in organotypic hippocampal culture. J. Neurochem. 73, 2613-2616.
  87. Teter, B., Xu, P.T., Gilbert, J.R., Roses, A.D., Galasko, D., and Cole, G.M. (2002). Defective neuronal sprouting by human apolipoprotein E4 is a gain-of-negative function. J. Neurosci. Res. 68, 331-336. https://doi.org/10.1002/jnr.10221
  88. Trommer, B.L., Shah, C., Yun, S.H., Gamkrelidze, G., Pasternak, E.S., Ye, G.L., Sotak, M., Sullivan, P.M., Pasternak, J.F., and LaDu, M.J. (2004). ApoE isoform affects LTP in human targeted replacement mice. Neuroreport 15, 2655-2658. https://doi.org/10.1097/00001756-200412030-00020
  89. Trommer, B.L., Shah, C., Yun, S.H., Gamkrelidze, G., Pasternak, E.S., Stine, W.B., Manelli, A., Sullivan, P., Pasternak, J.F., and LaDu, M.J. (2005). ApoE isoform-specific effects on LTP: blockade by oligomeric amyloid-beta1-42. Neurobiol. Dis. 18, 75-82. https://doi.org/10.1016/j.nbd.2004.08.011
  90. Veinbergs, I., Mallory, M., Mante, M., Rockenstein, E., Gilbert, J.R., and Masliah, E. (1999). Differential neurotrophic effects of apolipoprotein E in aged transgenic mice. Neurosci. Lett. 265, 218-222. https://doi.org/10.1016/S0304-3940(99)00243-8
  91. Vitek, M.P., Brown, C.M., and Colton, C.A. (2007). APOE genotypespecific differences in the innate immune response. Neurobiol. Aging 30, 1350-1360.
  92. Wahrle, S.E., Jiang, H., Parsadanian, M., Kim, J., Li, A., Knoten, A., Jain, S., Hirsch-Reinshagen, V., Wellington, C.L., Bales, K.R., et al. (2008). Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J. Clin. Invest. 118, 671-682.
  93. Walsh, D.M., and Selkoe, D.J. (2004). Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron 44, 181-193. https://doi.org/10.1016/j.neuron.2004.09.010
  94. Wang, C., Wilson, W.A., Moore, S.D., Mace, B.E., Maeda, N., Schmechel, D.E., and Sullivan, P.M. (2005). Human apoE4-targeted replacement mice display synaptic deficits in the absence of neuropathology. Neurobiol. Dis. 18, 390-398. https://doi.org/10.1016/j.nbd.2004.10.013
  95. White, F., Nicoll, J.A., Roses, A.D., and Horsburgh, K. (2001). Impaired neuronal plasticity in transgenic mice expressing human apolipoprotein E4 compared to E3 in a model of entorhinal cortex lesion. Neurobiol. Dis. 8, 611-625. https://doi.org/10.1006/nbdi.2001.0401
  96. Wilsie, L.C., Gonzales, A.M., and Orlando, R.A. (2006). Syndecan-1 mediates internalization of apoE-VLDL through a low density lipoprotein receptor-related protein (LRP)-independent, nonclathrin-mediated pathway. Lipids Health Dis. 5, 23. https://doi.org/10.1186/1476-511X-5-23

Cited by

  1. ApoE2 Exaggerates PTSD-Related Behavioral, Cognitive, and Neuroendocrine Alterations vol.40, pp.10, 2015, https://doi.org/10.1038/npp.2015.95
  2. A Mitochondrial Role of SV2a Protein in Aging and Alzheimer’s Disease: Studies with Levetiracetam vol.50, pp.1, 2015, https://doi.org/10.3233/JAD-150687
  3. Altered Energy Metabolism Pathways in the Posterior Cingulate in Young Adult Apolipoprotein E ɛ4 Carriers vol.53, pp.1, 2016, https://doi.org/10.3233/JAD-151205
  4. The therapeutic potential of berberine against the altered intrinsic properties of the CA1 neurons induced by Aβ neurotoxicity vol.758, 2015, https://doi.org/10.1016/j.ejphar.2015.03.016
  5. MicroRNAs in brain cholesterol metabolism and their implications for Alzheimer's disease vol.1861, pp.12, 2016, https://doi.org/10.1016/j.bbalip.2016.04.020
  6. The Neurobiology and Age-Related Prevalence of the ε4 Allele of Apolipoprotein E in Alzheimer’s Disease Cohorts vol.60, pp.3, 2016, https://doi.org/10.1007/s12031-016-0804-x
  7. Traumatic brain injuries vol.2, 2016, https://doi.org/10.1038/nrdp.2016.84
  8. Palmitoylation in Alzheimer⿿s disease and other neurodegenerative diseases vol.111, 2016, https://doi.org/10.1016/j.phrs.2016.06.008
  9. Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice vol.292, 2015, https://doi.org/10.1016/j.neuroscience.2015.02.031
  10. Platelet cytochrome oxidase and citrate synthase activities in APOE ε4 carrier and non-carrier Alzheimer's disease patients vol.12, 2017, https://doi.org/10.1016/j.redox.2017.04.010
  11. Co-injection of Aβ1-40 and ApoE4 impaired spatial memory and hippocampal long-term potentiation in rats vol.648, 2017, https://doi.org/10.1016/j.neulet.2017.03.043
  12. Profiling microRNA from Brain by Microarray in a Transgenic Mouse Model of Alzheimer’s Disease vol.2017, 2017, https://doi.org/10.1155/2017/8030369
  13. Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer's disease: the emerging role for microglia? vol.77, 2017, https://doi.org/10.1016/j.neubiorev.2017.01.046
  14. Apolipoprotein E4: A Risk Factor for Successful Cognitive Aging vol.15, pp.3, 2016, https://doi.org/10.12779/dnd.2016.15.3.61
  15. APOE ε4/ε4 diminishes neurotrophic function of human iPSC-derived astrocytes vol.26, pp.14, 2017, https://doi.org/10.1093/hmg/ddx155
  16. Promising Role of Neuromodulation in Predicting the Progression of Mild Cognitive Impairment to Dementia vol.53, pp.4, 2016, https://doi.org/10.3233/JAD-160305
  17. Liver X receptors regulate cerebrospinal fluid production vol.21, pp.6, 2016, https://doi.org/10.1038/mp.2015.133
  18. Rationalising the role of Keratin 9 as a biomarker for Alzheimer’s disease vol.6, pp.1, 2016, https://doi.org/10.1038/srep22962
  19. Interaction of ApoE3 and ApoE4 isoforms with an ITM2b/BRI2 mutation linked to the Alzheimer disease-like Danish dementia: Effects on learning and memory vol.126, 2015, https://doi.org/10.1016/j.nlm.2015.10.009
  20. Bioactive Compound Screen for Pharmacological Enhancers of Apolipoprotein E in Primary Human Astrocytes vol.23, pp.12, 2016, https://doi.org/10.1016/j.chembiol.2016.10.015
  21. The Immune System and Neuroinflammation as Potential Sources of Blood-Based Biomarkers for Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease vol.7, pp.5, 2016, https://doi.org/10.1021/acschemneuro.6b00042
  22. Hippocampal synaptic and neural network deficits in young mice carrying the human APOE4 gene vol.23, pp.9, 2017, https://doi.org/10.1111/cns.12720
  23. Towards defining the Mechanisms of Alzheimer’s disease based on a contextual analysis of molecular pathways vol.3, pp.1, 2016, https://doi.org/10.3934/genet.2016.1.25
  24. Liver X receptor agonist treatment significantly affects phenotype and transcriptome of APOE3 and APOE4 Abca1 haplo-deficient mice vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0172161
  25. Vitamin D deficiency might pose a greater risk for ApoEɛ4 non-carrier Alzheimer’s disease patients vol.37, pp.10, 2016, https://doi.org/10.1007/s10072-016-2647-1
  26. Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s disease Neurons vol.57, pp.4, 2017, https://doi.org/10.3233/JAD-160612
  27. Neuronally-directed effects of RXR activation in a mouse model of Alzheimer’s disease vol.7, 2017, https://doi.org/10.1038/srep42270
  28. Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes vol.113, pp.36, 2016, https://doi.org/10.1073/pnas.1609896113
  29. rs3851179 Polymorphism at 5′ to the PICALM Gene is Associated with Alzheimer and Parkinson Diseases in Brazilian Population vol.19, pp.2-3, 2017, https://doi.org/10.1007/s12017-017-8444-z
  30. A FDG-PET Study of Metabolic Networks in Apolipoprotein E ε4 Allele Carriers vol.10, pp.7, 2015, https://doi.org/10.1371/journal.pone.0132300
  31. LRP1 regulates peroxisome biogenesis and cholesterol homeostasis in oligodendrocytes and is required for proper CNS myelin development and repair vol.6, pp.2050-084X, 2017, https://doi.org/10.7554/eLife.30498
  32. Impact of amyloid-beta changes on cognitive outcomes in Alzheimer’s disease: analysis of clinical trials using a quantitative systems pharmacology model vol.10, pp.1, 2018, https://doi.org/10.1186/s13195-018-0343-5
  33. Aging, cognitive decline, apolipoprotein E and docosahexaenoic acid metabolism vol.25, pp.4, 2018, https://doi.org/10.1051/ocl/2018032
  34. LRP8 is overexpressed in estrogen-negative breast cancers and a potential target for these tumors vol.8, pp.1, 2018, https://doi.org/10.1002/cam4.1923
  35. Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides vol.8, pp.4, 2014, https://doi.org/10.15252/emmm.201505846
  36. Association between polymorphisms in the promoter region of the apolipoprotein E (APOE) gene and Alzheimer's disease: A meta-analysis vol.16, pp.None, 2014, https://doi.org/10.17179/excli2017-289
  37. Multi-Protection of DL0410 in Ameliorating Cognitive Defects in D-Galactose Induced Aging Mice vol.9, pp.None, 2014, https://doi.org/10.3389/fnagi.2017.00409
  38. Apolipoprotein E metabolism and functions in brain and its role in Alzheimer's disease vol.28, pp.1, 2014, https://doi.org/10.1097/mol.0000000000000383
  39. Cell Biology of Astrocyte-Synapse Interactions vol.96, pp.3, 2014, https://doi.org/10.1016/j.neuron.2017.09.056
  40. Effects of Newly Synthesized Recombinant Human Amyloid-β Complexes and Poly-Amyloid-β Fibers on Cell Apoptosis and Cognitive Decline vol.27, pp.11, 2017, https://doi.org/10.4014/jmb.1707.07003
  41. A novel quantification-driven proteomic strategy identifies an endogenous peptide of pleiotrophin as a new biomarker of Alzheimer’s disease vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-13831-0
  42. CSF tau is associated with impaired cortical plasticity, cognitive decline and astrocyte survival only in APOE4-positive Alzheimer’s disease vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-14204-3
  43. Alzheimer’s Disease, Oligomers, and Inflammation vol.62, pp.3, 2014, https://doi.org/10.3233/jad-170819
  44. Atrophy in Distributed Networks Predicts Cognition in Alzheimer’s Disease and Type 2 Diabetes vol.65, pp.4, 2018, https://doi.org/10.3233/jad-180570
  45. Molecular properties underlying regional vulnerability to Alzheimer’s disease pathology vol.141, pp.9, 2014, https://doi.org/10.1093/brain/awy189
  46. Apolipoprotein E mimetic peptide CN-105 improves outcome in a murine model of SAH vol.3, pp.4, 2018, https://doi.org/10.1136/svn-2018-000152
  47. Integrated Genomic Analysis Revealed Associated Genes for Alzheimer’s Disease in APOE4 Non-Carriers vol.16, pp.8, 2014, https://doi.org/10.2174/1567205016666190823124724
  48. Developmental roles of microglia: A window into mechanisms of disease vol.248, pp.1, 2014, https://doi.org/10.1002/dvdy.1
  49. APOE genotype, hypertension severity and outcomes after intracerebral haemorrhage vol.1, pp.1, 2019, https://doi.org/10.1093/braincomms/fcz018
  50. MiR-409-5p as a Regulator of Neurite Growth Is Down Regulated in APP/PS1 Murine Model of Alzheimer’s Disease vol.13, pp.None, 2014, https://doi.org/10.3389/fnins.2019.01264
  51. The Role of Apolipoprotein E Isoforms in Alzheimer’s Disease vol.68, pp.2, 2014, https://doi.org/10.3233/jad-180740
  52. The Role of Physical Fitness in Cognitive-Related Biomarkers in Persons at Genetic Risk of Familial Alzheimer’s Disease vol.8, pp.10, 2019, https://doi.org/10.3390/jcm8101639
  53. ApoE4-Induced Cholesterol Dysregulation and Its Brain Cell Type-Specific Implications in the Pathogenesis of Alzheimer's Disease vol.42, pp.11, 2014, https://doi.org/10.14348/molcells.2019.0200
  54. ApoE4: an emerging therapeutic target for Alzheimer’s disease vol.17, pp.1, 2014, https://doi.org/10.1186/s12916-019-1299-4
  55. Alzheimer’s in a dish - induced pluripotent stem cell-based disease modeling vol.8, pp.1, 2019, https://doi.org/10.1186/s40035-019-0161-0
  56. A modeling informed quantitative approach to salvage clinical trials interrupted due to COVID‐19 vol.6, pp.1, 2014, https://doi.org/10.1002/trc2.12053
  57. Learning from amyloid trials in Alzheimer's disease. A virtual patient analysis using a quantitative systems pharmacology approach vol.16, pp.6, 2020, https://doi.org/10.1002/alz.12082
  58. Simulating the Effects of Common Comedications and Genotypes on Alzheimer’s Cognitive Trajectory Using a Quantitative Systems Pharmacology Approach vol.78, pp.1, 2014, https://doi.org/10.3233/jad-200688
  59. APOE4 genotype exacerbates the impact of menopause on cognition and synaptic plasticity in APOE‐TR mice vol.35, pp.5, 2021, https://doi.org/10.1096/fj.202002621rr
  60. Pharmacological Strategies to Improve Dendritic Spines in Alzheimer’s Disease vol.82, pp.suppl1, 2014, https://doi.org/10.3233/jad-201106
  61. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: a systematic review vol.72, pp.None, 2014, https://doi.org/10.1016/j.arr.2021.101496
  62. Effects of the association between APOE rs405509 polymorphisms and gene-environment interactions on hand grip strength among middle-aged and elderly people in a rural population in southern China vol.16, pp.1, 2021, https://doi.org/10.1186/s13018-021-02522-2