DOI QR코드

DOI QR Code

Membranes for the Guided Bone Regeneration

  • Lee, Sang-Woon (Department of Oral and Maxillofacial Surgery, Gangneung Asan Hospital) ;
  • Kim, Seong-Gon (Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University)
  • Received : 2014.10.01
  • Accepted : 2014.10.17
  • Published : 2014.11.30

Abstract

Many kinds of membrane have been used for the guided bone regeneration (GBR) technique. However, most membranes do not fulfill all requirements for the ideal membrane for the GBR technique. Among them, collagen membrane has been most widely used. However, its high price and weak tensile strength in wet condition are limitations for wide clinical application. Synthetic polymers have also been used for the GBR technique. Recently, silk based membrane has been considered as a membrane for the GBR technique. Despite many promising preclinical data for use of a silk membrane, clinical data regarding the silk membrane has been limited. However, silk based material has been used clinically as vessel-tie material and an electrospun silk membrane was applied successfully to patients. No adverse effect related to the silk suture has been reported. Considering that silk membrane can be provided to patients at a cheap price, its clinical application should be encouraged.

Keywords

References

  1. Nguyen TT, Mui B, Mehrabzadeh M, et al. Regeneration of tissues of the oral complex: current clinical trends and research advances. J Can Dent Assoc 2013;79:d1.
  2. Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res 2013;57:3-14. https://doi.org/10.1016/j.jpor.2012.12.001
  3. Khojasteh A, Morad G, Behnia H. Clinical importance of recipient site characteristics for vertical ridge augmentation: a systematic review of literature and proposal of a classification. J Oral Implantol 2013;39:386-98. https://doi.org/10.1563/AAID-JOI-D-11-00210
  4. Corinaldesi G, Lizio G, Badiali G, Morselli-Labate AM, Marchetti C. Treatment of intrabony defects after impacted mandibular third molar removal with bioabsorbable and non-resorbable membranes. J Periodontol 2011;82:1404-13. https://doi.org/10.1902/jop.2011.100466
  5. Cortellini P, Tonetti MS. Clinical performance of a regenerative strategy for intrabony defects: scientific evidence and clinical experience. J Periodontol 2005;76:341-50. https://doi.org/10.1902/jop.2005.76.3.341
  6. Schwarz F, Hegewald A, Sahm N, Becker J. Long-term follow-up of simultaneous guided bone regeneration using native and cross-linked collagen membranes over 6 years. Clin Oral Implants Res 2014;25:1010-5. https://doi.org/10.1111/clr.12220
  7. Chattopadhyay S, Raines RT. Review collagen-based biomaterials for wound healing. Biopolymers 2014;101:821-33. https://doi.org/10.1002/bip.22486
  8. Parrish LC, Miyamoto T, Fong N, Mattson JS, Cerutis DR. Non-bioabsorbable vs. bioabsorbable membrane: assessment of their clinical efficacy in guided tissue regeneration technique. A systematic review. J Oral Sci 2009;51:383-400. https://doi.org/10.2334/josnusd.51.383
  9. Verissimo DM, Leitao RF, Ribeiro RA, et al. Polyanionic collagen membranes for guided tissue regeneration: effect of progressive glutaraldehyde cross-linking on biocompatibility and degradation. Acta Biomater 2010;6:4011-8. https://doi.org/10.1016/j.actbio.2010.04.012
  10. Rothamel D, Schwarz F, Sager M, Herten M, Sculean A, Becker J. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat. Clin Oral Implants Res 2005;16:369-78. https://doi.org/10.1111/j.1600-0501.2005.01108.x
  11. Speer DP, Chvapil M, Eskelson CD, Ulreich J. Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res 1980;14:753-64. https://doi.org/10.1002/jbm.820140607
  12. Caffesse RG, Nasjleti CE, Morrison EC, Sanchez R. Guided tissue regeneration: comparison of bioabsorbable and non-bioabsorbable membranes. Histologic and histometric study in dogs. J Periodontol 1994;65:583-91. https://doi.org/10.1902/jop.1994.65.6.583
  13. Proussaefs P, Lozada J. The use of resorbable collagen membrane in conjunction with autogenous bone graft and inorganic bovine mineral for buccal/labial alveolar ridge augmentation: a pilot study. J Prosthet Dent 2003;90:530-8. https://doi.org/10.1016/S0022-3913(03)00521-3
  14. Urban IA, Jovanovic SA, Lozada JL. Vertical ridge augmentation using guided bone regeneration (GBR) in three clinical scenarios prior to implant placement: a retrospective study of 35 patients 12 to 72 months after loading. Int J Oral Maxillofac Implants 2009;24:502-10.
  15. Bornstein MM, Bosshardt D, Buser D. Effect of two different bioabsorbable collagen membranes on guided bone regeneration: a comparative histomorphometric study in the dog mandible. J Periodontol 2007;78:1943-53. https://doi.org/10.1902/jop.2007.070102
  16. Zhao L, Li N, Wang K, Shi C, Zhang L, Luan Y. A review of polypeptide-based polymersomes. Biomaterials 2014;35:1284-301. https://doi.org/10.1016/j.biomaterials.2013.10.063
  17. Rokkanen PU. Absorbable materials in orthopaedic surgery. Ann Med 1991;23:109-15. https://doi.org/10.3109/07853899109148033
  18. Galgut P, Pitrola R, Waite I, Doyle C, Smith R. Histological evaluation of biodegradable and non-degradable membranes placed transcutaneously in rats. J Clin Periodontol 1991;18:581-6. https://doi.org/10.1111/j.1600-051X.1991.tb00093.x
  19. Daniels AU, Andriano KP, Smutz WP, Chang MK, Heller J. Evaluation of absorbable poly(ortho esters) for use in surgical implants. J Appl Biomater 1994;5:51-64. https://doi.org/10.1002/jab.770050108
  20. Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 1998;14:726-37. https://doi.org/10.1016/S0749-8063(98)70099-4
  21. Vuddhakanok S, Solt CW, Mitchell JC, Foreman DW, Alger FA. Histologic evaluation of periodontal attachment apparatus following the insertion of a biodegradable copolymer barrier in humans. J Periodontol 1993;64:202-10. https://doi.org/10.1902/jop.1993.64.3.202
  22. Urakami K, Higashi A, Umemoto K, Godo M, Watanabe C, Hashimoto K. Compositional analysis of copoly (DL-lactic/glycolic acid) (PLGA) by pyrolysis-gas chromatography/mass spectrometry combined with one-step thermally assisted hydrolysis and methylation in the presence of tetramethylammonium hydroxide. Chem Pharm Bull (Tokyo) 2001;49:203-5. https://doi.org/10.1248/cpb.49.203
  23. De Stefano D, De Rosa G, Maiuri MC, et al. Oligonucleotide decoy to NF-kappaB slowly released from PLGA microspheres reduces chronic inflammation in rat. Pharmacol Res 2009;60:33-40. https://doi.org/10.1016/j.phrs.2009.03.012
  24. Tseng YY, Liao JY, Chen WA, Kao YC, Liu SJ. Sustainable release of carmustine from biodegradable poly[((D,L))-lactide-co-glycolide] nanofibrous membranes in the cerebral cavity: in vitro and in vivo studies. Expert Opin Drug Deliv 2013;10:879-88. https://doi.org/10.1517/17425247.2013.758102
  25. Orenstein SB, Saberski ER, Kreutzer DL, Novitsky YW. Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice. J Surg Res 2012;176:423-9. https://doi.org/10.1016/j.jss.2011.09.031
  26. Jones AA, Buser D, Schenk R, Wozney J, Cochran DL. The effect of rhBMP-2 around endosseous implants with and without membranes in the canine model. J Periodontol 2006;77:1184-93. https://doi.org/10.1902/jop.2006.050337
  27. Lindfors LT, Tervonen EA, Sandor GK, Ylikontiola LP. Guided bone regeneration using a titanium-reinforced ePTFE membrane and particulate autogenous bone: the effect of smoking and membrane exposure. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:825-30. https://doi.org/10.1016/j.tripleo.2009.12.035
  28. Becker W, Dahlin C, Lekholm U, et al. Five-year evaluation of implants placed at extraction and with dehiscences and fenestration defects augmented with ePTFE membranes: results from a prospective multicenter study. Clin Implant Dent Relat Res 1999;1:27-32. https://doi.org/10.1111/j.1708-8208.1999.tb00088.x
  29. Bachleda P, Utikal P, Kalinova L, et al. Infectious complications of arteriovenous ePTFE grafts for hemodialysis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010;154:13-9. https://doi.org/10.5507/bp.2010.005
  30. Selvig KA, Kersten BG, Chamberlain AD, Wikesjo UM, Nilveus RE. Regenerative surgery of intrabony periodontal defects using ePTFE barrier membranes: scanning electron microscopic evaluation of retrieved membranes versus clinical healing. J Periodontol 1992;63:974-8. https://doi.org/10.1902/jop.1992.63.12.974
  31. Cao Y, Wang B. Biodegradation of silk biomaterials. Int J Mol Sci 2009;10:1514-24. https://doi.org/10.3390/ijms10041514
  32. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 2013;65:457-70. https://doi.org/10.1016/j.addr.2012.09.043
  33. Seok H, Park YT, Kim SG, Jin HJ. The effect of silk fibroin particles coated with hydroxyapatites on bone regeneration in the rat calvarial defect model. J Korean Assoc Maxillofac Plast Reconstr Surg 2013;35:13-7. https://doi.org/10.14402/jkamprs.2013.35.1.013
  34. Kim DW, Eum WS, Jang SH, et al. A transparent artificial dura mater made of silk fibroin as an inhibitor of inflammation in craniotomized rats. J Neurosurg 2011;114:485-90. https://doi.org/10.3171/2010.9.JNS091764
  35. Kanokpanont S, Damrongsakkul S, Ratanavaraporn J, Aramwit P. Physico-chemical properties and efficacy of silk fibroin fabric coated with different waxes as wound dressing. Int J Biol Macromol 2013;55:88-97. https://doi.org/10.1016/j.ijbiomac.2013.01.003
  36. Liu S, Dong C, Lu G, et al. Bilayered vascular grafts based on silk proteins. Acta Biomater 2013;9:8991-9003. https://doi.org/10.1016/j.actbio.2013.06.045
  37. Shen Y, Redmond SL, Teh BM, et al. Scaffolds for tympanic membrane regeneration in rats. Tissue Eng Part A 2013;19:657-68. https://doi.org/10.1089/ten.tea.2012.0053
  38. Kim JY, Choi JY, Jeong JH, et al. Low molecular weight silk fibroin increases alkaline phosphatase and type I collagen expression in MG63 cells. BMB Rep 2010;43:52-6. https://doi.org/10.5483/BMBRep.2010.43.1.052
  39. Lee EH, Kim JY, Kweon HY, et al. A combination graft of low-molecular-weight silk fibroin with Choukroun platelet-rich fibrin for rabbit calvarial defect. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:e33-8.
  40. Jang ES, Park JW, Kweon H, et al. Restoration of peri-implant defects in immediate implant installations by Choukroun platelet-rich fibrin and silk fibroin powder combination graft. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:831-6. https://doi.org/10.1016/j.tripleo.2009.10.038
  41. Lee SW, Kim SG, Song JY, et al. Silk fibroin and 4-hexylresorcinol incorporation membrane for guided bone regeneration. J Craniofac Surg 2013;24:1927-30. https://doi.org/10.1097/SCS.0b013e3182a3050c
  42. Song JM, Shin SH, Kim YD, et al. Comparative study of chitosan/fibroin-hydroxyapatite and collagen membranes for guided bone regeneration in rat calvarial defects: micro-computed tomography analysis. Int J Oral Sci 2014;6:87-93. https://doi.org/10.1038/ijos.2014.16
  43. Song JY, Kim SG, Lee JW, et al. Accelerated healing with the use of a silk fibroin membrane for the guided bone regeneration technique. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;112:e26-33.
  44. Kim KH, Jeong L, Park HN, et al. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 2005;120:327-39. https://doi.org/10.1016/j.jbiotec.2005.06.033
  45. Ha YY, Park YW, Kweon HY, Jo YY, Kim SG. Comparison of the physical properties and In vivo bioactivities of silkworm-cocoon-derived silk membrane, collagen membrane, and polytetrafluoroethylene membrane for guided bone regeneration. Macromolecular Res 2014;22:1018-23. https://doi.org/10.1007/s13233-014-2138-2
  46. Han DH, Hong KS, Chung CH, Yim SB. A comparative study for guided bone regeneration of silk fibroin nanomembrane(NanoGide-S(TM)). J Korean Acad Periodontol 2008;38:475-82.
  47. Hwang WJ, Jeong SN, Kim YS, et al. Clinical study of guided bone regeneration of extracted socket with PLA/PGA membrane and silk fibroin membrane. J Korean Acad Periodontol 2009;39:129-38.
  48. Kim J, Kim CH, Park CH, et al. Comparison of methods for the repair of acute tympanic membrane perforations: Silk patch vs. paper patch. Wound Repair Regen 2010;18:132-8. https://doi.org/10.1111/j.1524-475X.2009.00565.x
  49. Zhang J, Kaur J, Rajkhowa R, Li JL, Liu XY, Wang XG. Mechanical properties and structure of silkworm cocoons: a comparative study of Bombyx mori, Antheraea assamensis, Antheraea pernyi and Antheraea mylitta silkworm cocoons. Mater Sci Eng C Mater Biol Appl 2013;33:3206-13. https://doi.org/10.1016/j.msec.2013.03.051
  50. Sommerlad S, Mackenzie D, Johansson C, Atwell R. Guided bone augmentation around a titanium bone-anchored hearing aid implant in canine calvarium: an initial comparison of two barrier membranes. Clin Implant Dent Relat Res 2007;9:22-33. https://doi.org/10.1111/j.1708-8208.2006.00028.x
  51. Lee SW, Park YT, Kim SG, Kweon HY, Jo YY, Lee HS. The effects of tetracycline-loaded silk fibroin membrane on guided bone regeneration in a rabbit calvarial defect model. J Korean Assoc Maxillofac Plast Reconstr Surg 2012;34:293-8.
  52. Dashti A, Ready D, Salih V, et al. In vitro antibacterial efficacy of tetracycline hydrochloride adsorbed onto Bio-Oss bone graft. J Biomed Mater Res B Appl Biomater 2010;93:394-400.
  53. Harris RJ. Treatment of furcation defects with an allograft-alloplast-tetracycline composite bone graft combined with GTR: human histologic evaluation of a case report. Int J Periodontics Restorative Dent 2002;22:381-7.
  54. Gomes PS, Santos JD, Fernandes MH. Cell-induced response by tetracyclines on human bone marrow colonized hydroxyapatite and Bonelike. Acta Biomater 2008;4:630-7. https://doi.org/10.1016/j.actbio.2007.12.006
  55. Kozubek A, Tyman JH. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem Rev 1999;99:1-26. https://doi.org/10.1021/cr970464o
  56. Kim SG, Jeong JH, Park YW, et al. 4-Hexylresorcinol inhibits transglutaminase-2 activity and has synergistic effects along with cisplatin in KB cells. Oncol Rep 2011;25:1597-602.
  57. Kim SG, Lee SW, Park YW, Jeong JH, Choi JY. 4-hexylresorcinol inhibits NF-${\kappa}B$ phosphorylation and has a synergistic effect with cisplatin in KB cells. Oncol Rep 2011;26:1527-32.
  58. Kim SG, Choi JY. 4-hexylresorcinol exerts antitumor effects via suppression of calcium oscillation and its antitumor effects are inhibited by calcium channel blockers. Oncol Rep 2013;29:1835-40. https://doi.org/10.3892/or.2013.2292
  59. Kweon H, Kim SG, Choi JY. Inhibition of foreign body giant cell formation by 4-hexylresorcinol through suppression of diacylglycerol kinase delta gene expression. Biomaterials 2014;35:8576-84. https://doi.org/10.1016/j.biomaterials.2014.06.050
  60. Kim SG, Hahn BD, Park DS, et al. Aerosol deposition of hydroxyapatite and 4-hexylresorcinol coatings on titanium alloys for dental implants. J Oral Maxillofac Surg 2011;69:e354-63. https://doi.org/10.1016/j.joms.2011.06.002
  61. Kim MK, Park YT, Kim SG, Park YW, Lee SK, Choi WS. The effect of a hydroxyapatite and 4-hexylresorcinol combination graft on bone regeneration in the rabbit calvarial defect model. J Korean Assoc Maxillofac Plast Reconstr Surg 2012;34:377-83.

Cited by

  1. Collagen based barrier membranes for periodontal guided bone regeneration applications vol.105, pp.1, 2017, https://doi.org/10.1007/s10266-016-0267-0
  2. Porosity effect of 3D-printed polycaprolactone membranes on calvarial defect model for guided bone regeneration vol.13, pp.1, 2017, https://doi.org/10.1088/1748-605X/aa9bbc
  3. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review vol.21, pp.1, 2017, https://doi.org/10.1186/s40824-017-0095-5
  4. Effect of cross-linked vs non-cross-linked collagen membranes on bone: A systematic review vol.52, pp.6, 2017, https://doi.org/10.1111/jre.12470
  5. Integrated Oxidized-Hyaluronic Acid/Collagen Hydrogel with β-TCP Using Proanthocyanidins as a Crosslinker for Drug Delivery vol.10, pp.2, 2018, https://doi.org/10.3390/pharmaceutics10020037
  6. Silk Protein-Based Membrane for Guided Bone Regeneration vol.8, pp.8, 2018, https://doi.org/10.3390/app8081214
  7. Generation and histomorphometric evaluation of a novel fluvastatin-containing poly(lactic-co-glycolic acid) membrane for guided bone regeneration pp.1618-1255, 2018, https://doi.org/10.1007/s10266-018-0376-z
  8. Electrospun Polycaprolactone Fibrous Membranes Containing Ag, TiO2 and Na2Ti6O13 Particles for Potential Use in Bone Regeneration vol.9, pp.1, 2019, https://doi.org/10.3390/membranes9010012
  9. Medical-grade polycaprolactone scaffolds made by melt electrospinning writing for oral bone regeneration – a pilot study in vitro vol.19, pp.1, 2019, https://doi.org/10.1186/s12903-019-0717-5
  10. Comparison of unprocessed silk cocoon and silk cocoon middle layer membranes for guided bone regeneration vol.38, pp.None, 2016, https://doi.org/10.1186/s40902-016-0057-1
  11. Biocompatibility, resorption and biofunctionality of a new synthetic biodegradable membrane for guided bone regeneration vol.11, pp.4, 2016, https://doi.org/10.1088/1748-6041/11/4/045012
  12. Comparative study on bone regeneration between silk mat incorporated 4-hexylresorcinol and collagen membrane vol.34, pp.2, 2014, https://doi.org/10.7852/ijie.2017.34.2.32
  13. On the search of the ideal barrier membrane for guided bone regeneration vol.10, pp.5, 2018, https://doi.org/10.4317/jced.54767
  14. Effects of latex membrane on guided regeneration of long bones vol.30, pp.14, 2014, https://doi.org/10.1080/09205063.2019.1627653
  15. Guided Bone Regeneration Using BioGlue As a Barrier Material With and Without Biphasic Calcium Phosphate : vol.30, pp.4, 2014, https://doi.org/10.1097/scs.0000000000005428
  16. In Vitro Physico-Chemical Characterization and Standardized In Vivo Evaluation of Biocompatibility of a New Synthetic Membrane for Guided Bone Regeneration vol.12, pp.7, 2014, https://doi.org/10.3390/ma12071186
  17. Modifications of Polymeric Membranes Used in Guided Tissue and Bone Regeneration vol.11, pp.5, 2014, https://doi.org/10.3390/polym11050782
  18. Resorbable PCEC/gelatin-bismuth doped bioglass-graphene oxide bilayer membranes for guided bone regeneration vol.14, pp.3, 2019, https://doi.org/10.1088/1748-605x/ab007b
  19. Non-Resorbable Nanocomposite Membranes for Guided Bone Regeneration Based On Polysulfone-Quartz Fiber Grafted with Nano-TiO2 vol.9, pp.7, 2019, https://doi.org/10.3390/nano9070985
  20. Tailored Biomaterials for Therapeutic Strategies Applied in Periodontal Tissue Engineering vol.28, pp.15, 2019, https://doi.org/10.1089/scd.2019.0016
  21. A Novel Bilayer Polycaprolactone Membrane for Guided Bone Regeneration: Combining Electrospinning and Emulsion Templating vol.12, pp.16, 2014, https://doi.org/10.3390/ma12162643
  22. Evaluating the adhesion of human gingival fibroblasts and MG-63 osteoblast-like cells to activated PRP-coated membranes vol.20, pp.3, 2014, https://doi.org/10.1007/s10561-019-09772-9
  23. Guided Regeneration of Rabbit Calvarial Defects Using Silk Fibroin Nanofiber-Poly(glycolic acid) Hybrid Scaffolds vol.5, pp.10, 2014, https://doi.org/10.1021/acsbiomaterials.9b00678
  24. Epigallocatechin-3-gallate Cross-Linked Small Intestinal Submucosa for Guided Bone Regeneration vol.5, pp.10, 2014, https://doi.org/10.1021/acsbiomaterials.9b00920
  25. Fabrication and Characteristics of PCL Membranes Containing Strontium-Substituted Hydroxyapatite Nanofibers for Guided Bone Regeneration vol.11, pp.11, 2019, https://doi.org/10.3390/polym11111761
  26. Local tissue effects of various barrier membranes in a rat subcutaneous model vol.50, pp.None, 2014, https://doi.org/10.5051/jpis.2000380019
  27. Examination of Optimal Concentrations of Poly (Lactic-co-glycolic Acid) in Hexafluoroisopropyl Alcohol for Guided Bone Regeneration Membrane Prepared by Electrospinning vol.18, pp.3, 2014, https://doi.org/10.5466/ijoms.18.239
  28. Preparation and Evaluation of a Poly(Lactic-co-glycolic Acid)Membrane Containing β-TCP vol.18, pp.3, 2014, https://doi.org/10.5466/ijoms.18.248
  29. Scaffolds of PCL combined to bioglass: synthesis, characterization and biological performance vol.31, pp.5, 2014, https://doi.org/10.1007/s10856-020-06382-w
  30. Effect of Cold Plasma Treatment on Electrospun Nanofibers Properties: A Review vol.3, pp.8, 2014, https://doi.org/10.1021/acsabm.0c00154
  31. Evaluation and comparison of histologic changes and implant survival in extraction sites immediately grafted with two different xenografts: A randomized clinical pilot study vol.31, pp.9, 2014, https://doi.org/10.1111/clr.13626
  32. In vitro bioactivity and biological assays of porous membranes of the poly(lactic acid) containing calcium silicate fibers vol.77, pp.10, 2020, https://doi.org/10.1007/s00289-019-03021-5
  33. Which substances loaded onto collagen scaffolds influence oral tissue regeneration?-an overview of the last 15 years vol.24, pp.10, 2014, https://doi.org/10.1007/s00784-020-03520-0
  34. Titanium mesh for bone augmentation in oral implantology: current application and progress vol.12, pp.1, 2014, https://doi.org/10.1038/s41368-020-00107-z
  35. The Early Fragmentation of a Bovine Dermis-Derived Collagen Barrier Membrane Contributes to Transmembraneous Vascularization-A Possible Paradigm Shift for Guided Bone Regeneration vol.11, pp.3, 2021, https://doi.org/10.3390/membranes11030185
  36. Bioresorbable Magnesium-Based Alloys as Novel Biomaterials in Oral Bone Regeneration: General Review and Clinical Perspectives vol.10, pp.9, 2014, https://doi.org/10.3390/jcm10091842
  37. Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis vol.126, pp.None, 2014, https://doi.org/10.1016/j.msec.2021.112126
  38. Bone-adhesive barrier membranes based on alendronate-functionalized poly(2-oxazoline)s vol.9, pp.29, 2014, https://doi.org/10.1039/d1tb00502b
  39. An Insight into Nano Silver Fluoride-Coated Silk Fibroin Bioinspired Membrane Properties for Guided Tissue Regeneration vol.13, pp.16, 2021, https://doi.org/10.3390/polym13162659
  40. Comparative In Vivo Analysis of the Integration Behavior and Immune Response of Collagen-Based Dental Barrier Membranes for Guided Bone Regeneration (GBR) vol.11, pp.9, 2021, https://doi.org/10.3390/membranes11090712
  41. Simvastatin loaded chitosan guided bone regeneration membranes stimulate bone healing vol.56, pp.5, 2021, https://doi.org/10.1111/jre.12883
  42. Biomechanical properties of the bone during implant placement vol.21, pp.1, 2014, https://doi.org/10.1186/s12903-021-01442-1