DOI QR코드

DOI QR Code

Design optimization of the staking line for an electric fan blade using CFD

CFD를 이용한 선풍기 날개의 스태킹 라인 최적 설계

  • Park, Seunghwan (Department of Mechanical Engineering, Hanyang Univ.) ;
  • Ryu, Minhyoung (Department of Mechanical Engineering, Hanyang Univ.) ;
  • Cho, Leesang (Department of Mechanical Systems Engineering, Hansung Univ.) ;
  • Cho, Jinsoo (School of Mechanical Engineering, Hanyang Univ.)
  • Received : 2014.08.01
  • Accepted : 2014.10.13
  • Published : 2014.11.01

Abstract

Electric fans, which consist of axial blades, are operated by the induction motor. In this paper, the objective of this study is the performance improvement of the base model fan using the design optimization. In order to aerodynamic analysis, computational simulations are performed using commercial tool ANSYS-CFX ver. 14.5. And k-${\omega}$ SST turbulence model is used for the CFD analysis. The design variables are set up as sweep and lean angles. Volumetric flow rate and torque of the fan blades are fixed to objective function. The optimized model is shown the increment of the volumetric flow rate and the reduction of the torque compared with the base model. The experimental procedure is followed KS C 9301. CFD results and experimental results are fairly well matched.

선풍기는 유도 전동기에 의해 구동되는 축류형 날개를 가진 기계이다. 본 연구에서는 기본 설계된 선풍기의 날개를 바탕으로 스태킹 라인의 최적 설계를 통해 선풍기의 성능 향상을 목표로 하였다. 전산 해석을 위해 상용 툴인 Ansys 사(社)의 CFX 14.5를 이용하였고, 난류 모델은 k-${\omega}$ SST 를 사용하였다. 설계 변수는 스윕 각과 기울기 각으로 설정하였고, 유량과 토크를 목적함수로 설정하여 스태킹 라인의 최적화를 수행하였다. 최적화 결과 풍량이 증가하였고, 토크가 감소함을 확인 하였다. 최적화된 모델과 기본 모델은 KS C 9301을 이용하여 측정되었으며, 전산 해석 결과를 검증하였다.

Keywords

References

  1. Cho, J. U and Hwang, M. S, "Analysis of the Sir Flow due to the Number of Electric Fan Blades", Journal of The Korean Society of Manufacturing Process Engineers, Vol. 11, 2012, pp. 107-112.
  2. Hwang, J. H, "A Study on Electric Fan Design for Usability Enhancement - Mainly with propose concept design", Journal of Digital Design, Vol.13 2013, pp 203-212.
  3. Cho, C. H, Jung, Y. B, Kim, Y. C and Cho, S. Y, "A Study of the Tip Clearance Effect to the Performance of an Axial-Type Fan", Journal of Fluid Machinery, Vol. 11, 2008, pp. 7-17. https://doi.org/10.5293/KFMA.2008.11.6.007
  4. Kim, J. W, Kim, J. H, Lee, C and Kim, K. Y, "High-Efficiency Design of a Ventilation Axial-Flow Fan by Using Weighted Average Surrogate Models", Trans. Korean Soc. Mech. Eng. B, Vol. 35, 2011, pp. 763-771. https://doi.org/10.3795/KSME-B.2011.35.8.763
  5. Estevadeordal, J and Gogineni, S, W. Compenhaver, M. Brendel, "Flow field in a low-speed axial fan: a DPIV investigation", Experimental Thermal and Fluid Science, Vol. 23, 2000, pp 11-21. https://doi.org/10.1016/S0894-1777(00)00027-3
  6. Xu, C. and Amano, R. S., "Computational Analysis of Swept Compressor Rotor Blades", International Journal for Computational Methods in Engineering Science and Mechanics, Vol. 9, 2008, pp. 374-382. https://doi.org/10.1080/15502280802365840
  7. Vad, A, Kwedikha, A and Jaberg, H, "Effects of blade sweep on the performance characteristics of axial flow turbomachinery rotors", Journal of Power and Energy, Vol. 220, 2006, pp. 737-749. https://doi.org/10.1243/09576509JPE249
  8. Dentotn, J. D, "The effcects of lean and sweep on transonic fan performance: a computational study", Task Quarterly, No 1, 2002, pp. 7-23.
  9. Korean Agency for Technology and Standards, "Electric fans and ceiling fans", 2013.
  10. Ansys Inc, "Ansys 14.5 User's Manual", 2013
  11. Menter, F. R., "Two-equation eddy-viscosity turbulence models for engineering applications,", AIAA journal, Vol. 32, 1994, pp. 625-632.
  12. Pidotech Inc, "Piano User's Manual", 2011.
  13. Korea's energy standards, "Korea Energy Management Corporation", 2011.
  14. Kim, Y. H, Choi, J. H, Jung, J. I, Kim, s, Lee, J, Chu, M. S, Hong, K. J and Choi, D. H, "Optimal design of switched reluctance motor using two-dimensional finite element method", Journal of Applied Physics, Vol. 91, 2002, pp. 763-771.