DOI QR코드

DOI QR Code

Synthesis and Photovoltaic Properties of Conjugated Polymers Having Push-pull Structure according to the Type of Side-chain in the N-Substituted Phenothiazine

Push-pull 구조의 공액 고분자 합성 및 Phenothiazine의 질소 원자에 치환된 Side-chain에 따른 유기박막태양전지로의 특성 연구

  • Seong, Ki-Ho (Department of Industrial Chemistry, Sangmyung University) ;
  • Yun, Dae-Hee (Department of Industrial Chemistry, Sangmyung University) ;
  • Woo, Je-Wan (Department of Industrial Chemistry, Sangmyung University)
  • Received : 2014.09.22
  • Accepted : 2014.10.22
  • Published : 2014.12.10

Abstract

In this study, a new series of conjugated polymer 3-(5-(5,6-bis(octyloxy)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-10-(4-(octyloxy)phenyl)-10H-phenothiazine (P1) and 3-(5-(5,6-bis(octyloxy)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-10-(4-((2-ethylhexyl)oxy)phenyl)-10H-phenothiazine (P2) were synthesised and organic photovoltaics (OPVs) properties were characterized. The push-pull structure polymer consisted of phenothiazine derivative as an electron donor and benzothiadiazole derivative as an electron acceptor. The aliphatic chain substituted aromatic ring was substituted at the position of N in phenothiazine for the electron-rich and improved solubility. Excellent thermal stabilities of P1 and P2 were confirmed by measured Td values as 321.9 and $323.7^{\circ}C$, respectively and the degrees of polymerization were 4,911 (P1) and 5,294 (P2). The maximum absorption wavelength of P1 and P2 were 549 and 566 nm, respectively. The device was fabricated and the OPVs property was measured. As a result, the power efficiency of conversion for P1 and P2 were 0.96 and 0.90%, respectively.

본 연구에서는 새로운 종류의 공액 고분자 3-(5-(5,6-bis(octyloxy)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-10-(4-(octyloxy)phenyl)-10H-phenothiazine (P1)과 3-(5-(5,6-bis(octyloxy)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-10-(4-((2-ethylhexyl)oxy)phenyl)-10H-phenothiazine (P2)를 스즈키 커플링 반응으로 합성하여 유기박막 태양전지로의 특성을 확인하였다. Push-pull 구조 고분자의 전자주개 물질로 phenothiazine 유도체를, 전자받개 물질로 benzothiadiazole 유도체를 사용하였다. 전자를 풍부하게 하고, 용해성을 향상시키기 위하여 phenothiazine의 질소 원자에 알콕시 사슬이 도입된 방향족 고리를 치환하여 2종의 고분자(P1, P2)를 합성하였다. P1, P2의 분자량은 각각 4,911, 5,294이었고, $T_d$는 각각 321.9, $323.7^{\circ}C$로 이로부터 열 안정성이 우수함을 확인하였으며, 최대흡수파장은 549, 566 nm이었다. 소자를 제작하여 유기박막태양전지의 특성을 측정한 결과, P1과 P2의 효율은 각각 0.96, 0.90%이었다.

Keywords

References

  1. W. Feiyan, Z. Daijun, C. Lie, and C. Yiwang, Photovoltaics of Donor.Acceptor Polymers Based on Benzodithiophene with Lateral Thiophenyl and Fluorinated Benzothiadiazole, J. Polym. Sci. Part A: Polym. Chem., 51, 1506-1511 (2013). https://doi.org/10.1002/pola.26545
  2. D. H. Yun, H. S. Yoo, S. W. Heo, H. J. Song, D. K. Moon, and J. W. Woo, Synthesis and photovoltaic characterization of D/A structure compound based on N-substituted phenothiazine and benzothiadiazole, J. Ind. Eng. Chem., 19, 421-426 (2013). https://doi.org/10.1016/j.jiec.2012.08.033
  3. Z. Tan, I. Imae, Y. Ooyama, K. Komaguchi, J. Ohshita, and Y. Harima, Low bandgap polymers with benzodithiophene and bisthienylacrylonitrile units for photovoltaic applications, Eur. Polym. J., 49, 1634-1641 (2013). https://doi.org/10.1016/j.eurpolymj.2013.02.020
  4. H. S. Yoo and Y. S. Park, Synthesis and Photovoltaic Properties of Conducting Polymers Based on Phenothiazine, Appl. Chem. Eng., 24, 93-98 (2013).
  5. Q. Peng, X. Liu, Y. Qin, J. Xu, M. Li, and L. Dai, Pyrazino[2,3-g]quinoxaline-based conjugated copolymers with indolocarbazole coplanar moieties designed for efficient photovoltaic applications, J. Mater. Chem., 21, 7714-7722 (2011). https://doi.org/10.1039/c1jm10433k
  6. Y. R. Hong, J. Y. Ng, H. K. Wong, L. C. Moh, Y. J. Yip, Z. K. Chen, and T. B. Norsten, Synthesis and characterization of a series of low-bandgap copolymers based on cyclopenta[2,1-b:3,4-b']dithiophene and thienopyrroledione for photovoltaic applications, Sol. Energy Mater. Sol. Cells, 102, 58-65 (2012). https://doi.org/10.1016/j.solmat.2012.03.028
  7. Y. Li, Y. Chen, X. Liu, Z. Wang, X. Yang, Y. Tu, and X. Zhu, Controlling Blend Film Morphology by Varying Alkyl Side Chain in Highly Coplanar Donor Acceptor Copolymers for Photovoltaic Application, Macromolecular, 44, 6370-6381 (2011). https://doi.org/10.1021/ma201009n
  8. Z. Zhang, Q. Peng, D. Yang, Y. Chen, Y. Haung, X. Pu, Z. Lu, Q. Jiang, and Y. Liu, Novel conjugated polymers with planar backbone bearing acenaphtho[1,2-b]quinoxaline acceptor subunit for polymer solar cells, Synth. Met., 175, 21-29 (2013). https://doi.org/10.1016/j.synthmet.2013.04.024
  9. B. Burkhart, P. P. Khlyabich, T. C. Canak, T. W. LaJoie, and B. C. Thompson, "Semi-Random" Multichromophoric rr-P3HT Analogues for Solar Photon Harvesting, Macromolecular, 44, 1242-1246 (2011). https://doi.org/10.1021/ma102747e
  10. B. Burkhart, P. P. Khlyabich, and B. C. Thompson, Influence of the Ethylhexyl Side-Chain Content on the Open-Circuit Voltage in rr-Poly(3-hexylthiophene-co-3-(2-ethylhexyl)thiophene) Copolymers, Macromolecular, 45, 3740-3748 (2012). https://doi.org/10.1021/ma300263a
  11. P. Morvillo, F. Parenti, R. Diana, C. Fontanesi, A. Mucci, F. Tassinari, and L. Schenetti, A novel copolymer from benzodithiophene and alkylsulfanyl-bithiophene: Synthesis, characterization and application in polymer solar cells, Sol. Energy Mater. Sol. Cells, 104, 45-52 (2012). https://doi.org/10.1016/j.solmat.2012.04.044
  12. K. Colladet, S. Fourier, T. J. Cleij, L. Lutsen, J. Gelan, and D. Vanderzande, Low Band Gap Donor-Acceptor Conjugated Polymers toward Organic Solar Cells Applications, Macromolecular, 40, 65-72 (2007). https://doi.org/10.1021/ma061760i
  13. J. Y. Lee, W. S. Shin, J. R. Haw, and D. K. Moon, Low band-gap polymers based on quinoxaline derivatives and fused thiophene as donor materials for high efficiency bulk-heterojunction photovoltaic cells, J. Mater. Chem., 19, 4938-4945 (2009). https://doi.org/10.1039/b823536h
  14. L. H. Chan, S. Y. Juang, M. C. Chen, and Y. J. Lin, A new series of random conjugated copolymers containing 3,4-diphenylmaleimide and thiophene units for organic photovoltaic cell applications, Polymer, 53, 2334-2346 (2012). https://doi.org/10.1016/j.polymer.2012.04.014
  15. Y. H. Seo, W. H. Lee, J. H. Park, C. Bae, Y. Hong, J. W. Park, and I. N. Kang, Side-Chain Effects on Phenothiazine-Based Donor-Acceptor Copolymer Properties in Organic Photovoltaic Devices, J. Polym. Sci. Part A: Polym. Chem., 50, 649-658 (2012). https://doi.org/10.1002/pola.25074
  16. S. K. Lee, W. H. Lee, J. M. Cho, S. J. Park, J. U. Park, W. S. Shin, J. C. Lee, I. N. Kang, and S. J. Moon, Synthesis and Photovoltaic Properties of Quinoxaline-Based Alternating Copolymers for High-Efficiency Bulk-Heterojunction Polymer Solar Cells, Macromolecular, 44, 5994-6001 (2011). https://doi.org/10.1021/ma102943g
  17. Y. Liu, X. Wan, F. Wang, J. Zhou, C. Long, J. T, and Y. Chen, High-Performance Solar Cells using a Solution-Processed Small Molecule Containing Benzodithiophene Unit, Adv. Mater., 23, 5387-5391 (2011). https://doi.org/10.1002/adma.201102790
  18. Q. Shi, H. Fan, Y. Liu, J. Chen, L. Ma, W. Hu, Z. Shuai, Y. Li, and X. Zhan, Side Chain Engineering of Copolymers Based on Bithiazole and Benzodithiophene for Enhanced Photovoltaic Performance, Macromolecular, 44, 4230-4240 (2011). https://doi.org/10.1021/ma200576y
  19. P. J. Homnick and P. M. Lahti, Modular electron donor group tuning of frontier energy levels in diarylaminofluorenone push pull molecules, Phys. Chem. Chem. Phys., 14, 11961-11968, (2012). https://doi.org/10.1039/c2cp41813d
  20. J. D. Azoulay, Z. A. Koretz, B. M. Wong, and G. C. Bazan, Bridgehead Imine Substituted Cyclopentadithiophene Derivatives: An Effective Strategy for Band Gap Control in Donor Acceptor Polymers, Macromolecular, 46, 1337-1342 (2013). https://doi.org/10.1021/ma302569u
  21. Y. Zhang, J. Zou, C. C. Cheuh, H. L. Yip, and A. K. Y. Jen, Significant Improved Performance of Photovoltaic Cells Made from a Partially Fluorinated Cyclopentadithiophene/Benzothiadiazole Conjugated Polymer, Macromolecular, 45, 5427-5435 (2012). https://doi.org/10.1021/ma3009178
  22. E, Zhou, J. Cong, K. Tajima, C. Yang, K. Hashimoto, Synthesis and Photovoltaic Properties of Donor-Acceptor Copolymer Based on Dithienopyrrole and Thienopyrroledione, Macromol. Chem. Phys., 212, 305-310 (2011). https://doi.org/10.1002/macp.201000584
  23. X. Zhang, T. T. Steckler, R. R. Dasari, S. Ohira, W. J. Potscavage, Jr, S. P. Tiwari, S. Coppee, S. Ellinger, S. Barlow, J. L. Breadas, B. Kippelen, J. R. Reynolds, and S. R. Marder, Dithienopyrrole-based donor-acceptor copolymers: low band-gap materials for charge transport, photovoltaics and electrochromism, J. Mater. Chem., 20, 123-134 (2010). https://doi.org/10.1039/b915940a
  24. L. Huo, Z. Tan, X. Wang, Y. Zhou, M. Han, and Y. Li, Novel Two-Dimensional Donor-Acceptor Conjugated Polymers Containing Quinoxaline Units: Synthesis, Characterization, and Photovoltaic Properties, J. Polym. Sci. Part A: Polym. Chem., 46, 4038-4049 (2008). https://doi.org/10.1002/pola.22745
  25. P. Karastatiris, J. A. Mikroyanndis, and I. K. Spiliopoulos, Bipolar Poly(p-phenylene vinylene)s Bearing Electron-Donating Triphenylamine or Carbazole and Electron-Accepting Quinoxaline Moieties, J. Polym. Sci. Part A: Polym. Chem., 46, 2367-2378 (2008). https://doi.org/10.1002/pola.22571
  26. B. T. L. Nelson, T. M. Young, J. Liu, S. P. Mishra, J. A. Belot, C. L. Balliet, A. E. Javier, T. Kowalewski, and R. D. Mucullough, Transistor Paint: High Mobilities in Small Bandgap Polymer Semiconductor Based on the Strong Acceptor, Diketopyrrolopyrrole and Strong Donor, Dithienopyrrole, Adv. Mater., 22, 4617-4621 (2010). https://doi.org/10.1002/adma.201001599
  27. W. Li, W. S. C. Roelofs, M. Turbiez, M. M. Wienk, and R. A. J. Janssen, Polymer Solar Cells with Diketopyrrolopyrrole Conjugated Polymers as the Electron Donor and Electron Acceptor, Adv. Mater., 26, 3304-3309 (2014). https://doi.org/10.1002/adma.201305910
  28. W. Li, R. Qin, Y. Zhou, M. Andersson, F. Li, C. Zhang, B. Li, Z. Liu, Z. Bo, and F. Zhang, Tailoring side chains of low band gap polymers for high efficiency polymer solar cells, Polymer, 51, 3031-3038 (2010). https://doi.org/10.1016/j.polymer.2010.05.015
  29. A. Petrab, E. Bogdan, A. Terec, and I. Grosu, PODANDS WITH 10-ETHYL-3,7-DITHIENYL-10H-PHENOTHIAZINE CORE: SYNTHESIS AND STRUCTURAL ANALYSIS, Rev. Roum. Chim., 57(4-5), 345-351 (2012).
  30. A. S. Hart, C. B. K. C., N. K. Subbaiyan, P. A. Karr, and F. D'Souza, Phenothiazine-Sensitized Organic Solar Cells: Effect of Dye Anchor Group Positioning on the Cell Performance, Appl. Mater. Interfaces, 4, 5813-5820 (2012). https://doi.org/10.1021/am3014407
  31. X. Guo, M. Zhang, L. Huo, C. Cui, Y. Wu, J. Hou, and Y. Li, Poly(thieno[3,2 b]thiophene-alt-bithiazole): A D-A Copolymer Donor Showing Improved Photovoltaic Performance with Indene-$C_{60}$ Bisadduct Acceptor, Macromolecular, 45, 6930-6937 (2012). https://doi.org/10.1021/ma301269f
  32. K. H. Seong, D. H. Yun, and J. W. Woo, Synthesis and Characterization of Power Conversion Efficiency of D/A Structure Conjugated Polymer Based on Benzothiadiazole-Benzodithiophene, Appl. Chem. Eng., 24, 537-543 (2013).
  33. D. H. Yun, H. S. Yoo, K. H. Seong, J. H. Lim, Y. S. Park, and J. W. Woo, Synthesis, Photovoltaic Properties and Side-chain effect of Copolymer Containing Phenothiazine and 2,1,3-Benzothiadiazole, Appl. Chem. Eng., 25, 487-496 (2014). https://doi.org/10.14478/ace.2014.1068
  34. M. Zhang, H. Fan, X. Guo, Y. Yang, S. Wang, Z. G. Zhang, J. Zhang, X. Zhan, and Y. Li, Synthesis and Photovoltaic Properties of Copolymers Based on Bithiophene and Bithiazole, J. Polym. Sci. Part A: Polym. Chem., 49, 2764-2754 (2011).
  35. P. Yang, M. Yuan, D. F. Zeigler, S. E. Watkins, J. A. lee, and C. K. Luscombe, Influence of fluorine substituents on the film dielectric constant and open-circuit voltage in organic photovoltaics, J. Mater. Chem. C, 2, 3278-3284 (2014). https://doi.org/10.1039/c3tc32087a
  36. E. Zhou, J. Cong, S. Yamakawa, Q. Wei, M. Nakamura, K. Tajima, C. Yang, and K. Hashimoto, Synthesis of Thieno[3,4-b]pyrazine-Based and 2,1,3-Benzothiadiazole-Based Donor-Acceptor Copolymers and their Application in Photovoltaic Devices, Macromolecular, 43, 2873-2879 (2010). https://doi.org/10.1021/ma100039q
  37. J. Y. Lee, K. W. Song, J. R. Ku, T. H. Sung, and D. K. Moon, Development of DA-type polymers with phthalimide derivatives as electron withdrawing units and a promising strategy for the enhancement of photovoltaic properties, Sol. Energy Mater. Sol. Cells, 95, 3377-3384 (2011). https://doi.org/10.1016/j.solmat.2011.07.033
  38. S. Li, Z. He, J. Yu, S. Chen, A. Zhong, H. Wu, C. Zhong, J. Qin, and Z. Li, 2,3-Bis(5-Hexylthiophen-2-yl)-6,7-bis(octyloxy)-5,8-di(thio-phen-2-yl) quinoxaline: A Good Construction Block with Adjustable Role in the Donor-$\pi$-Acceptor System for Bulk-Heterojunction Solar Cells, J. Polym. Sci. Part A: Polym. Chem., 50, 2819-2828 (2012). https://doi.org/10.1002/pola.26086
  39. X. Xu, P. Cai, Y. Lu, N. S. Choon, J. Chen, X. Hu, and B. S. Ong, Synthesis and Characterization of Thieno[3,2-b]thiophene-isoindigo- based Copolymers as Electron Donor and Hole Transport Materials for Bulk-Heterojunction Polymer Solar Cells, J. Polym. Sci. Part A: Polym. Chem., 51, 424-434 (2013). https://doi.org/10.1002/pola.26400
  40. L. Dou, J. Gao, E. Richard, J. You, C. C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, Systematic Investigation of Benzodithiophene- and Diketopyrrolopyrrole-Based Low-Bandgap Polymers Designed for Single Junction and Tandem Polymer Solar Cells, J. Polym. Sci. Part A: Polym. Chem., 134, 10071-10079 (2012).
  41. J. Zhang, W. Cai, F. Huang, E. Wang, C. Zhong, S. Liu, M. Wang, C. Duan, T. Yang, and Y. Cao, Synthesis of Quinoxaline-Based Donor-Acceptor Narrow-Band-Gap Polymers and Their Cyclized Derivatives for Bulk-Heterojunction Polymer Solar Cell Applications, Macromolecular, 44, 894-901 (2011). https://doi.org/10.1021/ma1027164