DOI QR코드

DOI QR Code

Effect of Hypoxic Paracrine Media on Calcium-Regulatory Proteins in Infarcted Rat Myocardium

  • Song, Byeong-Wook (Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea College of Medicine) ;
  • Hwang, Hye Jin (Division of Cardiology, Severance Cardiovascular Research Center, Yonsei University College of Medicine) ;
  • Seung, Minji (Division of Cardiology, Severance Cardiovascular Research Center, Yonsei University College of Medicine) ;
  • Lee, Moon-Hyoung (Division of Cardiology, Severance Cardiovascular Research Center, Yonsei University College of Medicine)
  • Received : 2013.09.18
  • Accepted : 2013.12.05
  • Published : 2014.01.30

Abstract

Background and Objectives: An increase in intracellular calcium concentration due to loss of $Ca^{2+}$ homeostasis triggers arrhythmia or cardiac cell death in the heart. Paracrine factors released from stem cells have beneficial cardioprotective effects. However, the mechanism of modulation of $Ca^{2+}$ homeostasis by paracrine factors in ischemic myocardium remains unclear. Materials and Methods: We isolated rat bone marrow-derived mesenchymal stem cells (MSCs), and prepared paracrine media (PM) from MSCs under hypoxic or normoxic conditions (hypoxic PM and normoxic PM). We induced rat myocardial infarction by left anterior descending ligation for 1 hour, and treated PM into the border region of infarcted myocardium (n=6/group) to identify the alteration in calcium-regulated proteins. We isolated and stained the heart tissue with specific calcium-related antibodies after 11 days. Results: The hypoxic PM treatment increased $Ca^{2+}$-related proteins such as L-type $Ca^{2+}$ channel, sarcoplasmic reticulum $Ca^{2+}$ ATPase, $Na^+/K^+$ ATPase, and calmodulin, whereas the normoxic PM treatment increased those proteins only slightly. The sodium-calcium exchanger was significantly reduced by hypoxic PM treatment, compared to moderate suppression by the normoxic PM treatment. Conclusion: Our results suggest that hypoxic PM was significantly associated with the positive regulation of $Ca^{2+}$ homeostasis in infarcted myocardium.

Keywords

Acknowledgement

Supported by : Korean Society of Cardiology, National Research Foundation of Korea

References

  1. Webster KA, Graham RM, Thompson JW, et al. Redox stress and the contributions of BH3-only proteins to infarction. Antioxid Redox Signal 2006;8:1667-76. https://doi.org/10.1089/ars.2006.8.1667
  2. Orrenius S, McConkey DJ, Bellomo G, Nicotera P. Role of Ca2+ in toxic cell killing. Trends Pharmacol Sci 1989;10:281-5. https://doi.org/10.1016/0165-6147(89)90029-1
  3. Mathur A, Martin JF. Stem cells and repair of the heart. Lancet 2004; 364:183-92. https://doi.org/10.1016/S0140-6736(04)16632-4
  4. Couzin J, Vogel G. Cell therapy. Renovating the heart. Science 2004;304: 192-4. https://doi.org/10.1126/science.304.5668.192
  5. Orlic D, Hill JM, Arai AE. Stem cells for myocardial regeneration. Circ Res 2002;91:1092-102. https://doi.org/10.1161/01.RES.0000046045.00846.B0
  6. Min JY, Sullivan MF, Yang Y, et al. Significant improvement of heart function by cotransplantation of human mesenchymal stem cells and fetal cardiomyocytes in postinfarcted pigs. Ann Thorac Surg 2002;74: 1568-75. https://doi.org/10.1016/S0003-4975(02)03952-8
  7. Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 2003;9:1195-201. https://doi.org/10.1038/nm912
  8. Song H, Chang W, Lim S, et al. Tissue transglutaminase is essential for integrin-mediated survival of bone marrow-derived mesenchymal stem cells. Stem Cells 2007;25:1431-8. https://doi.org/10.1634/stemcells.2006-0467
  9. Chang MG, Tung L, Sekar RB, et al. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation 2006;113:1832-41. https://doi.org/10.1161/CIRCULATIONAHA.105.593038
  10. Nagaya N, Fujii T, Iwase T, et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 2004;287:H2670-6. https://doi.org/10.1152/ajpheart.01071.2003
  11. Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 2006;12:459-65. https://doi.org/10.1038/nm1391
  12. Nagaya N, Kangawa K, Itoh T, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 2005;112:1128-35. https://doi.org/10.1161/CIRCULATIONAHA.104.500447
  13. Hwang HJ, Chang W, Song BW, et al. Antiarrhythmic potential of mesenchymal stem cell is modulated by hypoxic environment. J Am Coll Cardiol 2012;60:1698-706. https://doi.org/10.1016/j.jacc.2012.04.056
  14. Decker KF, Rudy Y. Ionic mechanisms of electrophysiological heterogeneity and conduction block in the infarct border zone. Am J Physiol Heart Circ Physiol 2010;299:H1588-97. https://doi.org/10.1152/ajpheart.00362.2010
  15. Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 2008;70:23-49. https://doi.org/10.1146/annurev.physiol.70.113006.100455
  16. Sipido KR, Bito V, Antoons G, Volders PG, Vos MA. Na/Ca exchange and cardiac ventricular arrhythmias. Ann N Y Acad Sci 2007;1099:339-48. https://doi.org/10.1196/annals.1387.066
  17. Venetucci LA, Trafford AW, O'Neill SC, Eisner DA. Na/Ca exchange: regulator of intracellular calcium and source of arrhythmias in the heart. Ann N Y Acad Sci 2007;1099:315-25. https://doi.org/10.1196/annals.1387.033
  18. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93-8. https://doi.org/10.1161/hc0102.101442
  19. Beeres SL, Atsma DE, van der Laarse A, et al. Human adult bone marrow mesenchymal stem cells repair experimental conduction block in rat cardiomyocyte cultures. J Am Coll Cardiol 2005;46:1943-52. https://doi.org/10.1016/j.jacc.2005.07.055
  20. Berry MF, Engler AJ, Woo YJ, et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 2006;290:H2196-203. https://doi.org/10.1152/ajpheart.01017.2005
  21. Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006;20:661-9. https://doi.org/10.1096/fj.05-5211com
  22. Ostadal P, Elmoselhi AB, Zdobnicka I, Lukas A, Chapman D, Dhalla NS. Ischemia-reperfusion alters gene expression of Na+-K+ ATPase isoforms in rat heart. Biochem Biophys Res Commun 2003;306:457-62. https://doi.org/10.1016/S0006-291X(03)00986-0
  23. Ehrlich BE, Kaftan E, Bezprozvannaya S, Bezprozvanny I. The pharmacology of intracellular Ca(2+)-release channels. Trends Pharmacol Sci 1994;15:145-9. https://doi.org/10.1016/0165-6147(94)90074-4
  24. Leszek P, Szperl M, Klisiewicz A, et al. Alteration of myocardial sarcoplasmic reticulum Ca2+-ATPase and Na+-Ca2+ exchanger expression in human left ventricular volume overload. Eur J Heart Fail 2007;9: 579-86. https://doi.org/10.1016/j.ejheart.2007.01.011
  25. Jeck CD, Zimmermann R, Schaper J, Schaper W. Decreased expression of calmodulin mRNA in human end-stage heart failure. J Mol Cell Cardiol 1994;26:99-107. https://doi.org/10.1006/jmcc.1994.1011
  26. Talukder MA, Kalyanasundaram A, Zuo L, et al. Is reduced SERCA2a expression detrimental or beneficial to postischemic cardiac function and injury? Evidence from heterozygous SERCA2a knockout mice. Am J Physiol Heart Circ Physiol 2008;294:H1426-34. https://doi.org/10.1152/ajpheart.01016.2007
  27. Solomon SD, Zelenkofske S, McMurray JJ, et al. Sudden death in patients with myocardial infarction and left ventricular dysfunction, heart failure, or both. N Engl J Med 2005;352:2581-8. https://doi.org/10.1056/NEJMoa043938