DOI QR코드

DOI QR Code

The Role of MicroRNAs in Vascular Diseases; Smooth Muscle Cell Differentiation and De-Differentiation

  • Hwang, Ki-Chul (Severance Biomedical Science Institute, Cardiovascular Research Institute, Yonsei University College of Medicine)
  • Published : 2014.04.30

Abstract

Keywords

References

  1. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004;84:767-801. https://doi.org/10.1152/physrev.00041.2003
  2. McDonald OG, Owens GK. Programming smooth muscle plasticity with chromatin dynamics. Circ Res 2007;100:1428-41. https://doi.org/10.1161/01.RES.0000266448.30370.a0
  3. Wang DZ, Olson EN. Control of smooth muscle development by the myocardin family of transcriptional coactivators. Curr Opin Genet Dev 2004;14:558-66. https://doi.org/10.1016/j.gde.2004.08.003
  4. Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 2004;428:185-9. https://doi.org/10.1038/nature02382
  5. Liu Y, Sinha S, McDonald OG, Shang Y, Hoofnagle MH, Owens GK. Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem 2005;280:9719-27. https://doi.org/10.1074/jbc.M412862200
  6. Cao D, Wang Z, Zhang CL, et al. Modulation of smooth muscle gene expression by association of histone acetyltransferases and deacetylases with myocardin. Mol Cell Biol 2005;25:364-76. https://doi.org/10.1128/MCB.25.1.364-376.2005
  7. McDonald OG, Wamhoff BR, Hoofnagle MH, Owens GK. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest 2006;116:36-48.
  8. Boehm M, Slack FJ. MicroRNA control of lifespan and metabolism. Cell Cycle 2006;5:837-40. https://doi.org/10.4161/cc.5.8.2688
  9. Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny players in a big field. Immunity 2007;26:133-7. https://doi.org/10.1016/j.immuni.2007.02.005
  10. Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci 2007;32:189-97. https://doi.org/10.1016/j.tibs.2007.02.006
  11. Gurtan AM, Sharp PA. The role of miRNAs in regulating gene expression networks. J Mol Biol 2013;425:3582-600. https://doi.org/10.1016/j.jmb.2013.03.007
  12. Albinsson S, Sward K. Targeting smooth muscle microRNAs for therapeutic benefit in vascular disease. Pharmacol Res 2013;75:28-36. https://doi.org/10.1016/j.phrs.2013.04.003
  13. Xie C, Zhang J, Chen YE. MicroRNA and vascular smooth muscle cells. Vitam Horm 2011;87:321-39. https://doi.org/10.1016/B978-0-12-386015-6.00034-2
  14. Li P, Zhu N, Yi B, et al. MicroRNA-663 regulates human vascular smooth muscle cell phenotypic switch and vascular neointimal formation. Circ Res 2013;113:1117-27. https://doi.org/10.1161/CIRCRESAHA.113.301306
  15. Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009;460:705-10.
  16. Cheng Y, Liu X, Yang J, et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 2009;105:158-66. https://doi.org/10.1161/CIRCRESAHA.109.197517
  17. Kee HJ, Kim GR, Cho SN, et al. miR-18a-5p microRNA increases vascular smooth muscle cell differentiation by downregulating syndecan4. Korean Circ J 2014;44:255-63. https://doi.org/10.4070/kcj.2014.44.4.255
  18. Cizmeci-Smith G, Langan E, Youkey J, Showalter LJ, Carey DJ. Syndecan-4 is a primary-response gene induced by basic fibroblast growth factor and arterial injury in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1997;17:172-80. https://doi.org/10.1161/01.ATV.17.1.172

Cited by

  1. Circulating microRNA-451 as a predictor of resistance to neoadjuvant chemotherapy in breast cancer vol.16, pp.3, 2014, https://doi.org/10.3233/cbm-160578