DOI QR코드

DOI QR Code

Coupled simulation of grid-based fluid and mass-spring based deformation/fracture

질점-용수철 기반변형/파괴 물체와 격자 기반 유체의 상호작용 시뮬레이션 기술

  • Received : 2014.09.25
  • Accepted : 2014.11.27
  • Published : 2014.12.01

Abstract

This paper proposes a novel method that couples fluid and deformation/fracture. Our method considers two interaction types: fluid-object interaction and fluid-fluid interaction. In fluid-fluid interaction, we simulate water and smoke separately and blend their velocities in the intersecting region depend on their densities. Our method separates projection process into two steps for each of water and smoke. This reduces the number of grid cells required for projection in order to optimize the number of iterations for convergence and improve stability of the simulation. In water projection step, smoke region regarded as the cells with Dirichlet boundary condition. The smoke projection step solves water region with Neumann boundary condition. To take care of fluid-object interaction, we make use of the fluid pressure to update velocities of the each of the mass points so that the object can deform or fracture. Although our method doesn't provide physically accurate results, the various examples show that our method generate appealing visuals with good performance.

유체의 흐름과고체의 변형 및 파괴 현상이 어우러진 복잡한 자연 현상을 영상물로 만들어 내는 것은 각각의 물리 현상을 시뮬레이션 하는 기술들이 서로 상호작용할 수 있도록 결합되어야 가능하다. 본 논문에서는 질점-용수철 기반의 변형과 파괴가 가능한 물체와 격자 기반의유체가 서로 상호작용하는 시뮬레이션 기법을 제안한다. 이 기법은유체 간의 상호작용과 물체와 유체의 상호작용으로 나뉜다. 유체는 물과 연기로 구성되며 이들의 상호작용은 가변 밀도를 사용하는 기법과는 다르게 시뮬레이션을 두 단계로 나눠 진행한다. 먼저 유체 이류 이후의 경계 영역에 있는 물과 공기의 속도를 질량의 비율에 맞춰 혼합한다. 그리고 물의 프로젝션 과정에서 연기 영역을 Dirichlet 경계조건으로 설정하고 연기를 프로젝션 과정에서 물 영역을 Neumann 경계조건으로 설정하여 두 개의 문제로 분리한다. 유체를 독립적으로 풀기 때문에 상대적으로 높은 안정성을 기대할 수 있으며 프로젝션 과정에서 요구되는 셀의 개수가감소하여 수렴시키는데 필요한 계산 횟수가 줄어들어 효율적이다. 물체는 물과공기 모두 프로젝션을 할 때 기존의 강체와의 상호작용 기법과 유사하게 Neumann 경계조건으로 설정하지만 각 질점에 대하여 유체의 압력을 적분하기 때문에 유체의 움직임에 반응하는 변형과 파괴를 다룰 수 있다. 제안한 기법은 물리적으로 정밀한 결과를 제공하지는 않지만 영상 제작에서 필요한 다양한 시나리오의 시뮬레이션이 가능하며 논문에 제시된 다양한 결과는 이 기법이 효과적이라는 것을 보여준다.

Keywords

References

  1. M. Macklin, M. Muller, N. Chentanez, and T.-Y. Kim, "Unified particle physics for real-time applications," ACM Transactions on Graphics (TOG), vol. 33, no. 4, p. 153, 2014.
  2. M.Muller, B. Heidelberger, M. Hennix, and J. Ratcliff, "Position based dynamics," Journal of Visual Communication and Image Representation, vol. 18, no. 2, pp. 109-118, 2007. https://doi.org/10.1016/j.jvcir.2007.01.005
  3. S. J. Cummins and M. Rudman, "An sph projection method," Journal of computational physics, vol. 152, no. 2, pp. 584-607, 1999. https://doi.org/10.1006/jcph.1999.6246
  4. Z. Bao, J.-M. Hong, J. Teran, and R. Fedkiw, "Fracturing rigid materials," Visualization and Computer Graphics, IEEE Transactions on, vol. 13, no. 2, pp. 370-378, 2007. https://doi.org/10.1109/TVCG.2007.39
  5. Y. Zhu and R. Bridson, "Animating sand as a fluid," in ACM Transactions on Graphics (TOG), vol. 24, no. 3. ACM, 2005, pp. 965-972. https://doi.org/10.1145/1073204.1073298
  6. J. Stam, "Stable fluids," in Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 1999, pp. 121-128.
  7. M. Muller, S. Schirm, M. Teschner, B. Heidelberger, and M. Gross, "Interaction of fluids with deformable solids," Computer Animation and Virtual Worlds, vol. 15, no. 3-4, pp. 159-171, 2004. https://doi.org/10.1002/cav.18
  8. S. Clavet, P. Beaudoin, and P. Poulin, "Particle-based viscoelastic fluid simulation," in Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. ACM, 2005, pp. 219-228.
  9. N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, and M. Teschner, "Versatile rigid-fluid coupling for incompressible sph," ACM Transactions on Graphics (TOG), vol. 31, no. 4, p. 62, 2012.
  10. M. Carlson, P. J. Mucha, and G. Turk, "Rigid fluid: animating the interplay between rigid bodies and fluid," in ACM Transactions on Graphics (TOG), vol. 23, no. 3. ACM, 2004, pp. 377-384. https://doi.org/10.1145/1015706.1015733
  11. E. Guendelman, A. Selle, F. Losasso, and R. Fedkiw, "Coupling water and smoke to thin deformable and rigid shells," in ACM Transactions on Graphics (TOG), vol. 24, no. 3. ACM, 2005, pp. 973-981. https://doi.org/10.1145/1073204.1073299
  12. M. Kang, R. P. Fedkiw, and X.-D. Liu, "A boundary condition capturing method for multiphase incompressible flow," Journal of Scientific Computing, vol. 15, no. 3, pp. 323-360, 2000. https://doi.org/10.1023/A:1011178417620
  13. J.-M. Hong and C.-H. Kim, "Discontinuous fluids," in ACM Transactions on Graphics (TOG), vol. 24, no. 3. ACM, 2005, pp. 915-920. https://doi.org/10.1145/1073204.1073283
  14. F. Losasso, T. Shinar, A. Selle, and R. Fedkiw, "Multiple interacting liquids," in ACM Transactions on Graphics (TOG), vol. 25, no. 3. ACM, 2006, pp. 812-819. https://doi.org/10.1145/1141911.1141960
  15. M. Sussman, M. Hussaini, K. Smith, R. Zhi-Wei, and V. Mihalef, "A second-order adaptive sharp-interface method for incompressible multiphase flow," in Computational Fluid Dynamics 2004. Springer, 2006, pp. 643-648.
  16. S. O. R. Fedkiw, "Level set methods and dynamic implicit surfaces," 2003.
  17. A. Nealen, M. Muller, R. Keiser, E. Boxerman, and M. Carlson, "Physically based deformable models in computer graphics," in Computer Graphics Forum, vol. 25, no. 4. Wiley Online Library, 2006, pp. 809-836. https://doi.org/10.1111/j.1467-8659.2006.01000.x
  18. N. Foster and D. Metaxas, "Realistic animation of liquids," Graphical models and image processing, vol. 58, no. 5, pp. 471-483, 1996. https://doi.org/10.1006/gmip.1996.0039
  19. B. E. Feldman, J. F. O'brien, and O. Arikan, "Animating suspended particle explosions," in ACM Transactions on Graphics (TOG), vol. 22, no. 3. ACM, 2003, pp. 708-715. https://doi.org/10.1145/882262.882336
  20. J.-M. H. Jea-Gwang Lim, Bong-Jun Kim, "An adaptive fliplevelset hybrid method for efficient fluid simulation," Korea Computer Graphics Society, vol. 19, no. 3, pp. 1-11, 2013.
  21. F. H. Harlow, J. E. Welch, et al., "Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface," Physics of fluids, vol. 8, no. 12, p. 2182, 1965. https://doi.org/10.1063/1.1761178
  22. A. J. Chorin and J. E. Marsden, A mathematical introduction to fluid mechanics. Springer, 1990, vol. 3.
  23. J. A. Levine, A. W. Bargteil, C. Corsi, J. Tessendorf, and R. Geist, "A peridynamic perspective on spring-mass fracture," in Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Jul 2014.
  24. J.-M. Hong, H.-Y. Lee, J.-C. Yoon, and C.-H. Kim, "Bubbles alive," in ACM Transactions on Graphics (TOG), vol. 27, no. 3. ACM, 2008, p. 48.
  25. M. Muller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler, "Stable real-time deformations," in Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation. ACM, 2002, pp. 49-54.
  26. S. Hakkarainen, "Real-time rigid body simulations on gpus," 2007.
  27. E. Guendelman, R. Bridson, and R. Fedkiw, "Nonconvex rigid bodies with stacking," in ACM Transactions on Graphics (TOG), vol. 22, no. 3. ACM, 2003, pp. 871-878. https://doi.org/10.1145/882262.882358
  28. C. Kontaxis, "Fluid simulation for computer graphics," 2013.
  29. O. E. Arash, O. Genevaux, A. Habibi, and J.-m. Dischler, "Simulating fluid-solid interaction," in in Graphics Interface. Citeseer, 2003.
  30. J. Stam, "Nucleus: Towards a unified dynamics solver for computer graphics," in Computer-Aided Design and Computer Graphics, 2009. CAD/Graphics' 09. 11th IEEE International Conference on. IEEE, 2009, pp. 1-11.
  31. N. Akinci, G. Akinci, and M. Teschner, "Versatile surface tension and adhesion for sph fluids," ACM Transactions on Graphics (TOG), vol. 32, no. 6, p. 182, 2013.
  32. B. Solenthaler and R. Pajarola, "Predictive-corrective incompressible sph," in ACM transactions on graphics (TOG), vol. 28, no. 3. ACM, 2009, p. 40.
  33. V. Mihalef, B. Unlusu, D. Metaxas, M. Sussman, and M. Y. Hussaini, "Physics based boiling simulation," in Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 2006, pp. 317-324.
  34. L. Boyd and R. Bridson, "Multiflip for energetic two-phase fluid simulation," ACM Transactions on Graphics (TOG), vol. 31, no. 2, p. 16, 2012.
  35. B. Kim, "Multi-phase fluid simulations using regional level sets," in ACM Transactions on Graphics (TOG), vol. 29, no. 6. ACM, 2010, p. 175.
  36. C. Batty, F. Bertails, and R. Bridson, "A fast variational framework for accurate solid-fluid coupling," ACM Transactions on Graphics (TOG), vol. 26, no. 3, p. 100, 2007. https://doi.org/10.1145/1276377.1276502
  37. A. Robinson-Mosher, R. E. English, and R. Fedkiw, "Accurate tangential velocities for solid fluid coupling," in Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 2009, pp. 227-236.