오리 위장관 유래 미생물의 이용 효과 및 활용 방법

출처 : 농촌진흥청 홈페이지 (농촌진흥청)〉기술정보)〉영농기술보급정보)〉영농활용기술)

1. 현황 및 문제점

- 항생제 오남용 방지, 소비자의 축산물 위생·안 전성 요구, 국내 축산 경쟁력 제고를 위해 배합 사료 제조용 항생제 사용 전면 금지(11.07.01)
- 오리는 낙후된 시설, 사양관리 · 백신 · 방역 프로그램 부재 등으로 배합사료 제조용 항생제 전면 금지로 인한 피해가 타 축종에 비해 더 클 것으로 예상되어 오리 전용 항생제 대체제 개발 및 적용기술 확립이 필요함
- 오리는 닭, 돼지 등 타 축종에 비해 항생제 대체 물질 및 기능성 사료소재 관련 연구 및 자료가 부족한 실정임
- 항생제 대체제로는 미생물제, 유기산제, 면역조절제, 식물추출물 등이 있으며, 그 중 미생물제는 유해균의 경쟁적 배제, 항균물질 생산, 위장관 환경 개선, 위장관 발달, 장관 면역 조절 등을통해 가축 생산성 및 건강성을 증진시킴
- 미생물제로서 가치를 발휘하기 위해서는 동일 숙주 기원, 비병원성, 항균성, 장관 상피 및 점막 부착 능력, 장관 생존 능력 등이 수반되어야 함

 식물, 토양, 타 축종 유래 미생물을 이용하는 것 보다 오리 위장관 유래 미생물 이용시 급여 효과 를 높일 수 있으나, 미생물주 및 활용 방법이 확 립되지 않음

2. 과제 착수 배경 및 사전협의 내용

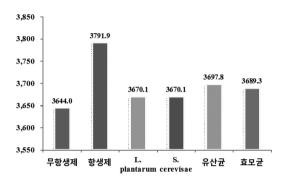
- o 과제 발굴·심의
 - 배합사료 제조용 항생제 전면금지('11.7) 및 고품질 안전 축산물에 대한 요구 증가로 신규 항생제 대체물질에 대한 효과 구명 및 적용기 술 개발 필요
 - 한국오리협회 방문('12.02.17), 오리 농가 교육('12.09.12, 충남 음성)에서 오리 전용 항생제 대체제 개발 요청
 - o 중간진도관리, 결과활용평가, 지도기관 협의
 - 배합사료 제조용 항생제 전면 금지('11.7) 이후, 오리 농가 피해 상황 분석을 통해 오리 전용항생제 대체제 개발의 중요성 부각 필요

3. 기존 영농활용기술과의 연계

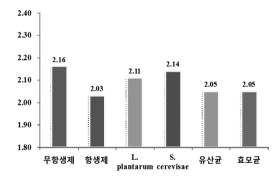
- 돼지, 닭, 젖소에서의 토양, 닭 유래 유산균과 효모균의 효과 구명 및 활용 방법에 관한 영농활 용기술은 존재하나, 오리에서의 미생물 활용 방 법이나 오리 위장관 유래 미생물 적용에 대한 기 술은 없음
 - ※ 생균제의 항생제 대체 및 닭·돼지 급여 효과(2003), 육계의 음수형 유산균 급여 방법 및 적정 급여기간(2004), 유산균 루테리(L. reuteri) 제제의 젖소 사료첨가방법 및 효과(2006) 등

※ 육계 체중 및 착색도 증진을 위한 효모제 급 여 방법(2003). 효모로 제조한 양돈용 생교 제 이용방법(2011). 양돈용 배합사료를 워 료로 만든 농가형 발효사료 제조 기술(2012) 등6.539원

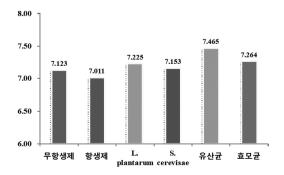
4. 개발기술 적용 가능 지역


○ 전국(오리사육농가, 오리계열업체, 사료회사 및 사료첨가제 회사)

5. 현장활용 내용


- 0 오리 위장관 유래 미생물은 오리 장관 상피 및 점막 부착 능력. 장관 생존 능력이 우수하여 다 른 숙주 기원의 효모균에 비해 효과가 우수함
- O 첨가수준: 오리 사료 1kg당 유산균, 효모균 104~106cfu 가량 함유하도록 첨가
- 급여기간: 입추시~출하 전까지
- 0 이용방법
 - ① 농촌진흥청 국립축산과학원 가금과 또는 한 국농업미생물자원센터에 오리 위장관 유래 유산 균 및 효모균 분양 요청
 - ② 유산균은 유산균 배양 배지(MRS, Rogosa SL 등)로 30℃에서 2일 동안 혐기 조건에서 배 양을 하고. 효모균은 효모균 배양 배지(YM. Yeast extract 등)로 30℃에서 호기적 또는 혐 기적 조건에서 2일 배양
 - ③ 배양액을 사료 벌크 차량이나 자가 배합기를 이용하여 배합사료 내 혼합
 - ④ 또는 미강 및 배합사료(1kg), 당밀(0.3%), 물 (500mL). 액상 배양 미생물을 혼합하고 발효기

나 밀폐용 용기를 이용하여 발효사료 제조 후. 일 반배합사료에 발효사료를 0.5~1.0% 혼합


- O 오리에 대한 오리 위장관 유래 미생물 첨가 급 여 효과
 - 오리 생산성 개선, 건강 유지, 장내 미생물 아정화 등

6주 체중(g/수)

사료요구율(섭취량/증체량)

맹장 젖산 생성균(log10 cfu/g)

6. 현장활용 기대효과

- O 사료 내 오리 위장관 유래 미생물 첨가 급여시
 - 증체량은 무항생제 대비 유산균 1.50%, 효모 균 1.25% 증가
 - 사료요구율은 무항생제 대비 5.09% 개선
 - 장내 대장균, 살모넬라 등의 유해균 억제를 통

한 장내 미생물총 안정화

- 무항생제 사육 대비 오리 수당 230.3원 수익 증가
- ㅇ 경제성 분석
 - 오리 10,000수 사육농가 연간 23,030,000원 수익 증대(연 10회 사육시)

손실적 요소(A)	이익적 요소(B)					
○ 미생물 분양 및 배양 추가 : 37.3원 - 미생물 발효사료 0.1% 첨가 비용 발생 · 7.467kg(사료섭취량)0.1%5,000원*=37.3원	○ 오리고기 판매수익 증가: 97.2원 - 증체량 증가로 오리고기 판매수익 증가 · (3.642kg-3.588kg)x1,800원*=97.2원 ○ 사료비 절감: 170.4원 - 사료섭취량 감소로 사료비 절감 · (7.467kg-7.751kg)x600원*=93.9원 ○ 계: 97.2원+170.4원=267.6원					
○ 추정 수익액(B-A)= 230.3원(267.6원-37.3원)						

※ 가격(원/kg): 미생물 발효사료(효모균, 배지, 미강, 당밀 등): 5,000원, 오리고기: 1,800원, 오리사료: 600원,

〈 세부연구결과 〉

- 1. 오리 생산성
- 항생제 무첨가구에 비해 유산균 및 효모균 처리 구가 6주 체중, 증체량 등이 증가하는 경향을 보임
- o 오리 위장관 유래 미생물이 일반적으로 널리 사용되고 있는 미생물주인 L. plantarum, S. cerevisiae에 비해 6주 체중 및 증체량이 높은 결과를 보임
- 사료요구율 역시 대조구인 항생제 무첨가구에 비해 오리 위장관 유래 미생물 첨가 급여시 개선

대조구	대조구		유산균	<u> </u>	효모균		
	(–)	(+)	L,P	А	В	S,C	А
개시체중(g)	55.7	55.6	55.4	55.7	55.5	55.4	55.7
6주 체중(g)	3644.0	3791.9	3670.1	3689.3	3697.8	3670.1	3689.3
증체량(g)	3588,3	3736.3	3614.7	3633,6	3642,3	3596.7	3655.1
사료섭취량(g)	7750.7	7584.7	7627.0	7594,2	7466.7	7697.0	7492.9
사료요구율	2.16	2,03	2.11	2.09	2,05	2.14	2,05

표 1. 오리 생산성 변화

되는 결과를 나타냄

- 2. 맹장 미생물총 변화
- O 맹장 미생물총 변화를 조사한 결과, 오리 위장 관 유래 미생물을 사료 내 첨가 급여하였을 때
- 젖산 생성균이 증가하였으며, 유해균이 대장균 과 살모넬라가 감소하는 경향을 보임
- ㅇ 총균수에서는 대조구를 비롯한 전 처리구에서 차이가 관찰되지 않음

	 대조구	 대조구		유산균		효모균				
	(-)	(+)	L,P	А	В	S.C	А	В		
	log10 cfu/g									
Total microbes	8.718	8.018	8,325	8.317	8.376	8.219	8.157	8.664		
Coliform bacteria	6.113	5.614	5.524	5.426	5.588	5.894	5.912	5.746		
Salmonella spp.	4.425	3.455	3,430	3.751	3.784	3.892	3.923	3.889		
Lactic acid bacteria	7.123	7.011	7.225	7.355	7.465	7.153	7.264	7.360		

표 2. 맹장 미생물총 변화

활용분야	축산자원개발											
활용내용요약	- 오리 위장관 유래 미생물 급여시 생산선 개선, 장내 미생물총 안정화 - 급여 기간 : 입추시~출하 전까지 - 이용 방법 : ①배합사료 내 직접 혼합, ② 발효사료 제조 이용											
활 용구 분	사업화	0	ē	현장실증	0	교육ㆍ	현장연시	0	농업기술	길잡()	0
소과제명	오리의 항생제 저감을 위한 항생제대체물질 개발 및 종합관리기술 확립 (PJ9070122012) 국책기술개발사업											
세부과제명	오리 전용 항생제 대체물질 개발 및 효율성 증진 연구 (PJ907012032012) 공동연구사업											
검 색 어	오리, 효모균, 생산성, 맹장 미생물							개발년의	개발년도 2012		12	
과제구분	어젠다 변			번호	대고	대과제 번호			중과제		번호	
세부구분	분야	V2		작목	작목 LP415002 기				7 술유형 C09			
연구개발자	소속	소속기관 성				전화번호			E-mail			
인구개발자	국립축산과학원		김동욱		041-580-6704			poultry98@korea.kr				
	국립축산과학원			김지혁		041-580-6712			jihyuk@korea.kr			
국		국립 축 산과학원		강환구		041-580-6710			magic100@korea,kr			
공동개발자	국립축산과학원		김민지		041-580-6720			mjkim00@korea,kr				
	국립축산과학원		나재천		041-580-6705			jcna6730@korea,kr				
	국립축산과학원		황보종		041-580-6709			kohb@korea.kr				
	국립축산과학원		최희철		041-580-6700			rooster@korea.kr				