
Recently, a new method called the local polynomial 
periodogram-Hough transform (LHT) was proposed for linear 
frequency modulated (LFM) signal detection. In this letter, a 
closed-form expression of the output signal-to-noise ratio is 
derived for the LHT, showing that the method exhibits a 
threshold effect for LFM signal detection. Comparisons with 
the pseudo-Wigner-Hough transform (PWHT) show that the 
threshold of the LHT is lower (better) than that of the PWHT. 
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I. Introduction 
In many practical applications, such as radar, sonar, and 

communications, linear frequency modulated (LFM) signals 
are of great importance. Since an LFM signal can be described 
as a straight line in the time-frequency domain, with the help of 
the Hough transform, the task of tracking an LFM signal can 
be turned into locating the maximum peak in the signal 
parameter space. The Wigner-Hough transform (WHT) was 
proposed to detect an LFM signal [1], which is asymptotically 
efficient and offers a desirable suppression of the cross terms. 
Moreover, the pseudo-Wigner-Hough transform (PWHT) was 
also proposed [2] as an estimator for the phase parameters of 
monocomponent and multicomponent FM signals, with both 
desirable numerical properties and statistical performance. 

However, the Wigner-Ville distribution (WVD) suffers from 
an inherent noise threshold effect problem [3], and it therefore 
cannot give satisfactory representation for LFM signals in a                                                                

significantly noisy environment. As shown in [4], the local 
polynomial periodogram (LPP) has a much better noise 
resistance capability than the WVD, and it can obtain a 
desirable time-frequency representation even in a very low 
input signal-to-noise ratio (SNR) environment. Therefore, by 
combining the LPP with the Hough transform, we proposed 
the LPP-Hough transform (LHT) for detecting LFM signals in 
very low SNR noise [4]. 
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The output SNR is an important measurement of the 
method’s sensitivity to noise. The closed-form expressions of 
the output SNR have been found for the WHT and PWHT [1], 
[2]. It was shown that in the presence of additive white 
Gaussian noise, the overall mapping of the WHT and the 
PWHT exhibits a certain threshold effect, and the threshold 
helps us determine the input SNR value at which the methods 
can work well. However, the statistical output SNR analysis for 
the LHT has not been investigated. In this letter, we will focus 
on the output SNR analysis for the LHT, to show that the LHT 
also exhibits the threshold effect and that the threshold of the 
LHT is lower (better) than that of the PWHT. 

This letter is organized as follows. Section II provides a brief 
review of the LHT, the Hough transform, and the local 
polynomial Fourier transform (LPFT) whose square is the LPP. 
In section III, output SNR analysis is presented for the LHT, 
with comparison to that of the PWHT. Finally, the conclusion 
is drawn in section IV. 

II. LHT 

The LHT is a combination of the LPP and the Hough 
transform. In this section, we will briefly review the LPFT and 
the Hough transform; then, we will provide the definition and 
algorithm of the LHT. 

The LPFT is a generalization of the short-time Fourier 
transform [5]. The second-order LPFT is a suitable candidate to 
process LFM signals. Consider an LFM signal expressed as 
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where A is the amplitude, a0 is the initial frequency, and b0 is 
the chirp rate, which shows the instantaneous rate of frequency 
variations of the signal. The second-order LPFT of the signal 
s(t) is defined as [5], [6] 
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where h(t) is the window function to segment the input signal, 
and the parameter 1ω , which is proportional to the chirp rate of 
the signal, can be estimated from the location coordinates of 
the maximum in the polynomial time frequency transform [7]. 
Details of the parameter estimation can be found in [7]. 

The Hough transform is a feature extraction method to detect 
lines in an image [8]. By using the Hough transform, each 
point in the time-frequency plane corresponds to a sinusoid in 
the signal parameter plane. If N points are concentrated along a 
straight line in the time-frequency plane, they will correspond 
to N sinusoidal curves intersecting at the same point in the 
signal parameter plane. The integration along the line produces 
a maximum, and its coordinates in the signal parameter plane 
are directly related to the parameters of the line. In this way, the 
Hough transform turns a difficult global detection problem in 
the time-frequency plane into a more easily solved local peak 
detection problem in the signal parameter plane. 

Since the LPP can provide better noise resistance capability 
than the WVD, we applied the Hough transform to the LPP of 
LFM signals, obtaining a new method known as the LHT for 
LFM signal detection [4].  

The LHT of the signal s(t) is defined as a mapping of the signal 
from the time-frequency domain into the signal parameter space: 
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therefore, the LHT can be interpreted as a line integration of the 
LPP. 

III. Output SNR Performance of LHT 

The purpose of this section is to theoretically derive the 
output SNR for performance evaluation of the LHT.  

The discrete form of (3), that is, the discrete LHT of a 
sequence s(n) for n=0, 1,…, N–1 using the rectangular window, 
is defined as 
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where M is a parameter defining the window length expressed 
as L=2M+1. Assuming L<<N, we also define the LHT as the 
summation over the N–L–1 points in the center of the LPP, 
which leaves out the rising and falling edges of the distribution. 
It can be easily derived that the maximum value of the LHT of 
an LFM signal is equal to and located 
at the coordinate point (a

2 2( 2 )(2 1)N M M A− +
0, b0). 
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When the signal is corrupted by the noise, the corresponding 
output, that is,  becomes a random variable 
and its maximum is at a coordinate point  
Following the definition in [1], the output SNR of the LHT is 
defined as 
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where means the LHT of the signal only and 
 indicates the LHT of the signal corrupted by 

noise. The noise is assumed to be a stationary complex white 
Gaussian noise, with a zero mean and a variance of , and 
independent of the signal. We further assume that the 
parameter 
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and its second-order moment is 
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Following the similar procedure in [1], we obtain
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By direct substitution, the terms in the multiple summations 
satisfy the following properties: 

Based on (5) and  
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which is the maximum of the LHT of the signal only, we 
obtain the output SNR as a function of the input SNR: 1 1
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(12) 
where the input SNR is defined as . It should be noted 
that the above closed-form expression is achieved by using the 
software package Mathematica and is valid under the condition 
that N>4M+1, that is, N>2L–1. 
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Based on the relationship between the input and output 
SNRs given in (12), we can discuss the threshold effect     
of the output SNR. When L<<N, the denominator of       

(12) is approximately equal to 2
in

22 .
3

NL SNR NL+ For 

the output SNR is approximated 
as  For  the output 
SNR degrades rapidly according to  
Therefore, the threshold on the SNR performance of this 
method is said to occur at the interception point, 

of these two cases considered above. 
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Therefore, the variance of the output is independent of the 
signal parameters. With the assumption N>4M+1 and inserting 
the above expressions into (8), we obtain  
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2.
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The output SNR of the PWHT was proposed in [2] as  
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From (6) and (10), we obtain the variance as  
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Assuming L<<N, the PWHT has an SNR performance 
threshold at 1/(2L): for the output SNR is 
approximated as ; for  
the output SNR degrades rapidly according to 

 For better readability, comparisons of 
the output SNRs of the PWHT and LHT are listed in Table 1.   
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Figure 1 shows the output SNR of the LHT for N=512 with 
different L values. We can clearly observe that as L increases,  

  

Table 1. Comparisons of output SNR of PWHT and LHT. 
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Fig. 1. Output SNR of LHT vs. input SNR for N=512. Output
SNR of PWHT for L=15 is given for comparison. 
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Fig. 2. Output SNR of LHT vs. input SNR for L=63, with N=128,
256, 512, and 1,024. Output SNR of PWHT for N=128 is
given for comparison. 
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the threshold becomes lower (better) and the performance 
below the threshold becomes better. Figure 2 shows the output 
SNR of the LHT for L=63 for different N values. It can be seen 
that as N increases, the performance of the output SNR 
becomes better and the threshold becomes lower (better). The 
output SNR of the PWHT for L=15 and the output SNR of the 
PWHT for N=128 are shown in Fig. 1 and Fig. 2, respectively, 
for comparison. It can be seen that the output SNR 
performance of the LHT above the input SNR threshold is the 
same as that of the PWHT, and the output SNR performance of 
the LHT below the threshold is better than that of the PWHT. 
Moreover, the threshold of the LHT is slightly lower (better) 
and is able to achieve a better performance than the PWHT. 

IV. Conclusion 

In this letter, the output SNR of the LHT was derived and 

showed that the LHT exhibits the input SNR threshold effect. 
Compared with the PWHT, the LHT has a lower (better) SNR 
threshold. When the SNR is above the threshold, the LHT 
achieves the same output SNR performance as the PWHT. 
When the SNR is lower than the threshold, the LHT achieves 
better output SNR performance than the PWHT. 
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