DOI QR코드

DOI QR Code

Development of Efficient Dynamic Bandwidth Allocation Algorithm for XGPON

  • Han, Man Soo (Division of Information Engineering, Mokpo National University) ;
  • Yoo, Hark (Communications Internet Research Laboratory, ETRI) ;
  • Lee, Dong Soo (Communications Internet Research Laboratory, ETRI)
  • Received : 2012.01.25
  • Accepted : 2012.07.16
  • Published : 2013.02.01

Abstract

This paper proposes an efficient bandwidth utilization (EBU) algorithm that utilizes the unused bandwidth in dynamic bandwidth allocation (DBA) of a 10-gigabit-capable passive optical network (XGPON). In EBU, an available byte counter of a queue can be negative and the unused remainder of an available byte counter can be utilized by the other queues. In addition, EBU uses a novel polling scheme to collect the requests of queues as soon as possible. We show through analysis and simulations that EBU improves performance compared to that achieved with existing methods. In addition, we describe the hardware implementation of EBU. Finally we show the test results of the hardware implementation of EBU.

Keywords

References

  1. ITU-T Rec. G.987.1, "10 Gigabit-Capable Passive Optical Network (XG-PON): General Requirements," 2010.
  2. D. Parsons, "GPON vs. EPON Costs Comparison," BroadLight Inc., June 2005. http://www.broadlight.com
  3. B. Skubic et al., "A Comparison of Dynamic Bandwidth Allocation for EPON, GPON, and Next-Generation TDM PON," IEEE Comm. Mag., vol. 47, no. 3, Mar. 2009, pp. 40-48.
  4. J. Kim et al., "Compact 2.5 Gb/s Burst-Mode Receiver with Optimum APD Gain for XG-PON1 and GPON Applications," ETRI J., vol. 31, no. 5, Oct. 2009, pp. 622-624. https://doi.org/10.4218/etrij.09.0209.0227
  5. ITU-T Rec. G.984.3, "Gigabit-Capable Passive Optical Networks (G-PON): Transmission Convergence Layer Specification," 2008.
  6. ITU-T Rec. G.987.3 Rev.2, "10-Gigabit-Capable Passive Optical Networks (XG-PON): Transmission Convergence (TC) Specifications," 2010.
  7. M. Mcgarry, M. Reisslein, and M. Maier, "Ethernet Passive Optical Network Architectures and Dynamic Bandwidth Allocation algorithms," IEEE Commun. Surveys Tutorials, vol. 10, no. 3, 2008, pp. 46-60. https://doi.org/10.1109/COMST.2008.4625804
  8. J. Zheng and H.T. Mouftah, "A Survey of Dynamic Bandwidth Allocation Algorithms for Ethernet Passive Optical Networks," Optical Switching Netw., vol. 6, no. 3, July 2009, pp. 151-162. https://doi.org/10.1016/j.osn.2009.03.003
  9. J.D. Angelopoulos, H.C. Leligou, and T. Argyriou, "Prioritized Multiplexing of Traffic Accessing an FSAN-Compliant GPON," 3rd IFIP-TC6 Netw. Conf., Athens, Greece, 2004.
  10. H.C. Leligou et al., "Efficient Medium Arbitration of FSAN-Compliant GPONs," Int. J. Comm. Syst., vol. 19, no. 5, June 2006, pp. 603-617. https://doi.org/10.1002/dac.761
  11. J.D. Angelopoulos et al., "Efficient Transport of Packets with QoS in an FSAN-Aligned GPON," IEEE Comm. Mag., vol. 42, no. 2, Feb. 2004, pp. 92-98.
  12. K. Kanonakis and I. Tomkos, "Offset-Based Scheduling with Flexible Intervals for Evolving GPON Networks," J. Lightw. Technol., vol. 27, no. 15, Aug. 2009, pp. 3259-3268. https://doi.org/10.1109/JLT.2009.2021412
  13. M.-S. Han et al., "Efficient Dynamic Bandwidth Allocation for FSAN-Compliant GPON," OSA J. Opt. Netw., vol. 7, no. 8, July 2008, pp. 783-795. https://doi.org/10.1364/JON.7.000783
  14. C.H. Chang et al., "Full-Service MAC Protocol for Metro-Reach GPONs," J. Lightw. Technol., vol. 28, no. 7, Apr. 2010, pp. 1016-1022. https://doi.org/10.1109/JLT.2009.2037342
  15. H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation: Vol. 1: Vacation and Priority Systems, Part 1, Amsterdam: North Holland Publishing Co., 1991.
  16. Product Specification, "Divider Generator v3.0," Xilinx, June 2009.
  17. G. Kramer, Ethernet Passive Optical Networks, New York: McGraw-Hill, 2005.

Cited by

  1. TWDM PON을 위한 새로운 MAC 프로토콜 및 동적대역할당 방법 vol.17, pp.6, 2013, https://doi.org/10.6109/jkiice.2013.17.6.1419
  2. Two-Stage Resource Allocation to Improve Utilization of Synchronous OFDM-PON Supporting Service Differentiation vol.37, pp.4, 2013, https://doi.org/10.4218/etrij.15.0114.0922
  3. The max-min fair approach on dynamic bandwidth allocation for XG-PONs : I. Gravalos et al. vol.26, pp.10, 2013, https://doi.org/10.1002/ett.2893
  4. Burst-by-burst dynamic bandwidth allocation for XG-PONs vol.5, pp.3, 2013, https://doi.org/10.1049/iet-net.2015.0070
  5. Demonstration of Time- and Wavelength-Division Multiplexed Passive Optical Network Based on VCSEL Array vol.38, pp.1, 2013, https://doi.org/10.4218/etrij.16.0115.0044
  6. Improved dynamic bandwidth allocation algorithm forXGPON vol.9, pp.1, 2013, https://doi.org/10.1364/jocn.9.000087
  7. Design, implementation, and evaluation of an XG-PON module for the ns-3 network simulator vol.93, pp.5, 2017, https://doi.org/10.1177/0037549716682093
  8. Sleep assistive dynamic bandwidth assignment scheme for passive optical network (PON) vol.36, pp.3, 2013, https://doi.org/10.1007/s11107-018-0799-z
  9. Comprehensive bandwidth utilization and polling mechanism for XGPON vol.31, pp.3, 2013, https://doi.org/10.1002/dac.3475
  10. Comprehensive Polling and Scheduling Mechanism for Long Reach Gigabit Passive Optical Network vol.40, pp.1, 2013, https://doi.org/10.1515/joc-2017-0026
  11. Comprehensive Polling and Scheduling Mechanism for Long Reach Gigabit Passive Optical Network vol.40, pp.1, 2013, https://doi.org/10.1515/joc-2017-0026
  12. Efficient upstream bandwidth utilization with minimum bandwidth waste for time and wavelength division passive optical network vol.52, pp.1, 2013, https://doi.org/10.1007/s11082-019-2127-y
  13. A Survey of Dynamic Bandwidth Assignment Schemes for TDM-Based Passive Optical Network vol.41, pp.3, 2013, https://doi.org/10.1515/joc-2017-0186
  14. A Survey of Dynamic Bandwidth Assignment Schemes for TDM-Based Passive Optical Network vol.41, pp.3, 2013, https://doi.org/10.1515/joc-2017-0186