DOI QR코드

DOI QR Code

대규모 데이터 분석을 위한 MapReduce 기술의 연구 동향

The MapReduce framework for Large-scale Data Analysis: Overview and Research Trends

  • 이경하 (한국전자통신연구원 스마트미디어플랫폼연구실) ;
  • 박원주 (한국전자통신연구원 스마트미디어플랫폼연구실) ;
  • 조기성 (한국전자통신연구원 스마트미디어플랫폼연구실) ;
  • 류원 (한국전자통신연구원 지능형융합미디어연구부)
  • 발행 : 2013.12.15

초록

MapReduce는 다양한 형식의 대용량 데이터를 병렬 처리하는데 있어 효과적인 도구로 인식되고 있다. 특히 MapReduce의 오픈 소스 구현인 Hadoop은 여러 분야에서 널리 이용되고 있으며, 가장 대표적인 빅데이터 솔루션으로 현재까지 많은 주목을 받아오고 있다. 하지만, MapReduce는 그 구조적 특정으로 인한 이점과 함께 여러 제약과 단점들을 가진다. 이에 따라 MapReduce의 개선을 위한 많은 연구와 시스템 개량이 학계와 산업계에서 동시에 수행되어 왔다. 본고에서는 대용량 데이터 분석을 위한 MapReduce 프레임워크의 특성과 이를 개선하기 위한 최근의 연구 내용들을 소개한다. 또한 향후의 대용량 데이터 처리는 어떠한 모습을 취하게 될 것인지를 예측해 본다.

키워드