DOI QR코드

DOI QR Code

Design Factor Analysis of End-Effector for Oriental Melon Harvesting Robot in Greenhouse Cultivation

시설재배 참외 수확 로봇용 엔드이펙터의 설계 요인 분석

  • Ha, Yu Shin (Department of Bio Industrial Machinery Engineering, College of Agriculture and Life Science, Kyungpook National University) ;
  • Kim, Tae Wook (Department of Precision Mechanical Engineering, College of Science and Technology, Kyungpook National University)
  • 하유신 (경북대학교 생물산업기계공학과) ;
  • 김태욱 (경북대학교 정밀기계공학과)
  • Received : 2013.08.21
  • Accepted : 2013.09.13
  • Published : 2013.09.30

Abstract

This study analyzed the geometric, compressive, cutting and friction properties of oriental melons in order to design a gripper capable of soft handling and a cutter for cutting oriental melon vine among the end effector of oriental melon as a preliminary step for developing the end effector of the robot capable of harvesting oriental melons in protected cultivation. As a result, the average length, diameter at the midpoint, weight, volume and roundness of the oriental melons were 108 mm, 70 mm, 188 g, 333 mL and 3.8 mm. Nonlinear regression analysis was performed on the equation $W=L^a{\times}D_2^b$ with variation of the length (L) and diameter (D2) of the weight (W) of the oriental melons. As a result, it was shown that there was a correlation between a of 2.0279 and b of -0.9998 as a constant value. The average diameter of the oriental melon vine was 3.8 mm, and most vines were distributed within a radius of 5 mm from the center. The average yield value, compressive strength and hardness of the oriental melons were $36.5N/cm^2$, $185.7N/cm^2$ and $636.7N/cm^2$, respectively. The average cutting force and shear strength of the oriental melon vines were $2.87{\times}10^{-2}\;N$ and $5.60N/cm^2$, respectively. The maximum friction coefficient of the oriental melons was rubber of 0.609, followed by aluminium of 0.393, stainless steel of 0.177 and teflon of 0.079. It was considered possible to apply it to the size of the gripper and cutter, turning radius, dynamics of drive motor and selection of materials and their quality in light of the position error and safety factor according to the movement when designing end effector based on the analyzed data.

본 연구는 시설재배에서 참외를 수확할 수 있는 로봇의 엔드이펙터를 개발하기 위한 전단계로서, 참외의 엔드이펙트 중에서 소프트 핸드링이 가능한 그립퍼와 참외줄기를 절단하는 커터를 설계하기 위해 참외의 기하학, 압축, 절단, 마찰 특성 등을 분석하였다. 그 결과 참외의 길이는 평균 108mm, 직경은 중간지점에서 평균 70mm, 중량은 평균 188g, 부피는 평균 333mL, 진원도는 평균 3.8mm로 나타났다. 참외의 중량(W)에 대하여 길이(L)와 직경(D2)을 변수로 하는 식 $W=L^a{\times}D_2^b$로부터 비선형 회귀분석을 실시한 결과 a는 2.0279, b는 -0.9998의 상수값을 가지는 상관관계가 있는 것으로 나타났다. 참외줄기의 지름은 평균 3.8mm이며, 참외 줄기는 중심으로부터 반경 5mm 범위 내에서 대부분 분포하였다. 참외의 항복치와 압축강도, 경도의 평균값은 각각 $36.5N/cm^2$, $185.7N/cm^2$, $636.7N/cm^2$이며, 참외 줄기의 절단력과 절단강도는 각각 $2.87{\times}10^{-2}N$$5.60N/cm^2$로 나타났다. 참외의 마찰계수는 고무가 0.609으로 가장 높게 나타났고, 그 다음으로 알루미늄이 0.393, 스테인레스강이 0.177, 테프론이 0.079로 나타났다. 분석된 자료를 토대로 엔드이펙터 설계시 동작에 따른 위치 오차와 안전율을 감안하여, 그립퍼의 및 커터의 크기, 선회반경, 설치위치, 구동모터의 동력, 재료 및 재질의 선정 등에 적용할 수 있을 것으로 판단되었다.

Keywords

References

  1. Bae, G.J., K.S. Lee, Y.G. Kong, G.J. Oh, and S.J. Lee. 2011. The prevalence of musculoskeletal symptoms and the ergonomic risk factors among oriental melon-growing farmers. The Korean Society of Occupational and Environmental Medicine 23(1):1-8 (In Korean).
  2. Hwang, H., S.C. Kim, and D.Y. Choi. 2003. Facilities for bioproduction and environmental engineering: development of multi-functional tele-operative modular robotic system for watermelon cultivation in greenhouse. Journal of Biosystems Engineering 28(6):517-522 (In Korean). https://doi.org/10.5307/JBE.2003.28.6.517
  3. Jang, I.J., T.H. Kim, and K.Y. Kwon. 1997. Development of apple harvesting robot (1) - Development of robot hand for apple harvesting -. Journal of Biosystems Engineering 22(4): 411-420 (In Korean).
  4. Kim, S.C., H. Hwang, Y.B. Lee, S.C. Kim, D.H. Im, and H.G. Choi. 2007. Development of strawberry harvesting robot under bench type cultivation (prototype 2). Journal of Biosystems Engineering 12(1):111-117 (In Korean).
  5. Kondo, N., Y. Shibano, T. Fujiura, K. Mohri, M. Monta, and H. Yamada. 1995. End-effectors for petty-tomato harvesting robot. Acta Horticulturae 399:239-246.
  6. Lee, D.W., H.T. Kim, B.R. Min, W. Kim, and D.W. Kim. 2000. Development of a end-effector for grapes harvester. Proceedings of the Bio-environment Control Conterence 9(2):98-103 (In Korean).
  7. MIFAFF. 2012. Status of Vegetable Greenhouse Facilities and Production of vegetables in 2011. Ministry for Food, Agriculture, Forestry and Fisheries, Gwacheon, Republic of Korea (In Korean).
  8. Min, B.R. and D.W. Lee. 2004. The end-effector of a cucumber robot. Journal of Biosystems Engineering 29(3):281-286 (In Korean). https://doi.org/10.5307/JBE.2004.29.3.281
  9. Monta, M., N. Kondo, and K.C. Ting. 1998. End-effectors for tomato harvesting robot. Artificial Intelligence Review 12: 11-25. https://doi.org/10.1023/A:1006595416751
  10. SAS. 2010. SAS 9.1 User's Guide. SAS Institute Inc., North Carolina, USA.
  11. Shin, Y.S., I.K. Yeon, Y.J. Seo, H.W. Do, J.E. Lee, C.D. Choi, and S.D. Park. 2006. Selection of oriental melon (Cucumis melo L. var. makuwa Makino) cultivars for second cropping in summer season. Journal of Bio-environment Control 15(3):270-276 (In Korean).
  12. Son, J.R., C.H. Kang, K.S. Han, S.L. Chung, and G.Y. Kwon. 2000. Development of tomato harvesting robot - 3-D detection technique for identifiying tomatoes -. Journal of Biosystems Engineering 25(5):415-420 (In Korean).
  13. Van Henten, E.J., J. Hemming, B.A.J. van Tuijl, J.G. Kornet, J. Meuleman, J. Bontsema, and E.A. van Os. 2002, An Autonomous Robot for Harvesting Cucumbers in Greenhouses. Autonomous Robots 13(3):241-258. https://doi.org/10.1023/A:1020568125418
  14. Yamamoto, S., S. Hayashi, H. Yoshida, K. Kobayashi, and K. Shigematsu. 2008. Development of an end effector for a strawberry-harvesting robot. Acta Horticulturae 801(1):565- 572.