DOI QR코드

DOI QR Code

Comprehensive evaluation of structural geometrical nonlinear solution techniques Part II: Comparing efficiencies of the methods

  • Rezaiee-Pajand, M. (Department of Civil Engineering, School of Engineering, Ferdowsi University of Mashhad) ;
  • Ghalishooyan, M. (Department of Civil Engineering, School of Engineering, Ferdowsi University of Mashhad) ;
  • Salehi-Ahmadabad, M. (Department of Civil Engineering, School of Engineering, Ferdowsi University of Mashhad)
  • 투고 : 2012.08.26
  • 심사 : 2013.11.09
  • 발행 : 2013.12.25

초록

In part I of the article, formulation and characteristics of the several well-known structural geometrical nonlinear solution techniques were studied. In the present paper, the efficiencies and capabilities of residual load minimization, normal plane, updated normal plane, cylindrical arc length, work control, residual displacement minimization, generalized displacement control and modified normal flow will be evaluated. To achieve this goal, a comprehensive comparison of these solution methods will be performed. Due to limit page of the article, only the findings of 17 numerical problems, including 2-D and 3-D trusses, 2-D and 3-D frames, and shells, will be presented. Performance of the solution strategies will be considered by doing more than 12500 nonlinear analyses, and conclusions will be drawn based on the outcomes. Most of the mentioned structures have complex nonlinear behavior, including load limit and snap-back points. In this investigation, criteria like number of diverged and complete analyses, the ability of passing load limit and snap-back points, the total number of steps and analysis iterations, the analysis running time and divergence points will be examined. Numerical properties of each problem, like, maximum allowed iteration, divergence tolerance, maximum and minimum size of the load factor, load increment changes and the target point will be selected in such a way that comparison result to be highly reliable. Following this, capabilities and deficiencies of each solution technique will be surveyed in comparison with the other ones, and superior solution schemes will be introduced.

키워드

참고문헌

  1. Bathe, K.J. Dvorkin, E.N. (1983), "On the automatic solution of nonlinear finite element equations", Comput. Struct., 871-879.
  2. Bergan, P.G., Horrigmoe, G., Brakeland, B. and Soreide, T.H. (1978), "Solution techniques for non-linear finite element problems", Int. J. Num. Meth. Eng., 12(11), 1677-1696. https://doi.org/10.1002/nme.1620121106
  3. Cardona, A. and Huespe, A. (1998), "Continuation methods for tracing the equilibrium path in flexible mechanism analysis", Eng. Comput., 15(2), 190-220. https://doi.org/10.1108/02644409810202602
  4. Chen, H. and Blandford, G.E. (1993), "Work-increment-control method for non-linear analysis", Int. J. Num. Meth. Eng, 36(6), 909-930. https://doi.org/10.1002/nme.1620360603
  5. Clarke, M.J. and Hancock, G.J. (1990), "A study of incremental-iterative strategies for non-linear analyses", Int. J. Num. Meth. Eng, 29(7), 1365-1391. https://doi.org/10.1002/nme.1620290702
  6. Crisfield, M.A. (1997), Non-Linear Finite Element Analysis of Solids and Structures, Volume 2 Advanced Topics, John Wiley & Sons.
  7. Eduardo Nobre Lages, G.H.P. (1999), "Nonlinear finite element analysis using an Object-Oriented Philosophy-Application to Beam Elements and to the Cosserat Continuum", Eng. Comput., 15, 73-89. https://doi.org/10.1007/s003660050006
  8. Feenstra, P.H. and Schellekens, J.C.J. (1991), "Self-adaptive solution algorithm for a constrained Newton-Raphson method", Delft University of Technology, Department of Civil Engineering, Stevin laboratory- Mechanics & Structures Division, Netherlands.
  9. Geers, M.G.D. (1999), "Enhanced solution control for physically and geometrically non-linear problems. Part II-comparative performance analysis", Int. J. Num. Meth. Eng., 46(2), 205-230. https://doi.org/10.1002/(SICI)1097-0207(19990920)46:2<205::AID-NME669>3.0.CO;2-S
  10. Gorgun, H. and Yilmaz, S. (2012), "Geometrically nonlinear analysis of plane frames with semi-rigid connections accounting for shear deformations", Struct. Eng. Mech., 44(4), 539-569. https://doi.org/10.12989/sem.2012.44.4.539
  11. Harrison, H. (1983), "Elastic post-buckling response of plane frames", Instability and Plastic Collapse of Steel Structures, Ed. Morris, L.J., Granada, 56-65.
  12. Huang, B.Z. and Atluri, S.N. (1995), "A simple method to follow post-buckling paths in finite element analysis", Comput. Struct., 57(3), 477-489. https://doi.org/10.1016/0045-7949(94)00623-B
  13. Hrinda, G.A. (2007), "Geometrically nonlinear static analysis of 3D trusses using the arc-length method", Computational Methods and Experimental Measurements XIII, Prague, Czech Republic, 243-252.
  14. Kim, T.H., Cheon, J.H. and Shin, H.M (2009), "Evaluation of behavior and strength of prestressed concrete deep beams using nonlinear analysis", Comput. Concrete, 9(1), 63-79.
  15. Koohestani, K. and Kaveh, A. (2010), "Efficient buckling and free vibration analysis of cyclically repeated space truss structures", Finite Elem. Anal. Des., 46(10), 943-948. https://doi.org/10.1016/j.finel.2010.06.009
  16. Kuo Mo Hsiao and Fang Yu Hou (1987), "Nonlinear finite element analysis of elastic frames", Comput. Struct., 26(4), 693-701. https://doi.org/10.1016/0045-7949(87)90016-2
  17. Lee, S., Manuel, F.S. and Rossow, E.C. (1968), "Large deflections and stability of elastic frame", J. Eng. Mech. Div., 94(2), 521-548.
  18. Lee, S.J. and Kanok-Nukulchai, W. (1998), "A nine-node assumed strain finite element for large-deformation analysis of laminated shells", Int. J. Num. Meth. Eng., 42(5), 777-798. https://doi.org/10.1002/(SICI)1097-0207(19980715)42:5<777::AID-NME365>3.0.CO;2-P
  19. Loganathan, S. (1989), "Geometric and material nonlinear behaviour of space frame structures", Ph.D. Thesis, The University of Queensland.
  20. Meek, J.L. and Loganathan, S. (1989), "Large displacement analysis of space-frame structures", Comput. Meth. Appl. Mech. Eng., 72(1), 57-75. https://doi.org/10.1016/0045-7825(89)90121-7
  21. Meek, J.L. and Xue, Q. (1998), "A study on the instability problem for 3D frames", Comput. Meth. Appl. Mech. Eng., 158(3-4), 235-254. https://doi.org/10.1016/S0045-7825(98)00254-0
  22. Noor, A.K. and Peters, J.M. (1983), "Instability analysis of space trusses", Comput. Meth. Appl. Mech. Eng., 40(2), 199-218. https://doi.org/10.1016/0045-7825(83)90090-7
  23. Nooshin, H. and Disney P.L. (2000), "Formex configuration processing I", Int. J. Space Struct., 15(1), 1-52. https://doi.org/10.1260/0266351001494955
  24. Powell, G. and Simons, J. (1981), "Improved iteration strategy for nonlinear structures", Int. J. Num. Meth. Eng, 17(10), 1455-1467. https://doi.org/10.1002/nme.1620171003
  25. Ramesh, G. and Krishnamoorthy, C.S. (1994), "Inelastic post-buckling analysis of truss structures by dynamic relaxation method", Int. J. Num. Meth. Eng., 37(21), 3633-3657. https://doi.org/10.1002/nme.1620372105
  26. Rezaiee-Pajand, M., Tatar, M. and Moghaddasie, B. (2009), "Some geometrical bases for incremental-iterative methods", Int. J. Eng., Tran. B: Appl., 22(3), 245-256.
  27. Saffari, H., Fadaee, M.J. and Tabatabaei, R. (2008), "Nonlinear analysis of space trusses using modified normal flow algorithm", J. Struct. Eng., 134(6), 998-1005. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:6(998)
  28. Schellekens, J.C.J., Feenstra, P.H. and de Borst, R. (1992), "A self-adaptive load estimator based on strain energy", Computational Plasticity, Fundamentals and Applications, Eds. Owen, D.R.J., Onate, E. and Hinton, E.. CIMNE, Barcelona, Pineridge Press, 187-198.
  29. Schweizerhof, K.H. and Wriggers, P. (1986), "Consistent linearization for path following methods in nonlinear FE analysis", Comput. Meth. Appl. Mech. Eng., 59(3), 261-279. https://doi.org/10.1016/0045-7825(86)90001-0
  30. Simo, J.C. and Vu-Quoc, L. (1986), "A three-dimensional finite-strain rod model. part II: Computational aspects", Comput. Meth. Appl. Mech. Eng., 58(1), 79-116. https://doi.org/10.1016/0045-7825(86)90079-4
  31. Surana, K.S. (1982), "Geometrically non-linear formulation for the three dimensional solid-shell transition finite elements", Comput. Struct., 15(5), 549-566. https://doi.org/10.1016/0045-7949(82)90007-4
  32. Surana, K.S. (1983), "Geometrically nonlinear formulation for the curved shell elements", Int. J. Num. Meth. Eng., 19(4), 581-615. https://doi.org/10.1002/nme.1620190409
  33. Sze, K.Y., Chan, W.K. and Pian, T.H.H. (2002), "An eight-node hybrid-stress solid-shell element for geometric nonlinear analysis of elastic shells", Int. J. Num. Meth. Eng., 55, 853-878. https://doi.org/10.1002/nme.535
  34. Sze, K.Y. and Zheng, S.J. (1999), "A hybrid stress nine-node degenerated shell element for geometric nonlinear analysis", Comput. Mech., 23(5), 448-456. https://doi.org/10.1007/s004660050424
  35. Sze, K.Y. and Zheng, S.J. (2002), "A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses", Comput. Meth. Appl. Mech. Eng., 191(17-18), 1945-1966. https://doi.org/10.1016/S0045-7825(01)00362-0
  36. Thai, H.T. and Kim, S.E. (2009), "Large deflection inelastic analysis of space trusses using generalized displacement control method", J. Constr. Steel Res., 65(10-11), 1987-1994. https://doi.org/10.1016/j.jcsr.2009.06.012
  37. Williams, F.W. (1964), "An approach to the non-linear behaviour of the members of a rigid jointed plane framework with finite deflections", Q. J. Mech. Appl. Math., 17(4), 451-469. https://doi.org/10.1093/qjmam/17.4.451
  38. Wood, R.D. and Zienkiewicz, O.C. (1977), "Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells", Comput. Struct., 7(6), 725-735. https://doi.org/10.1016/0045-7949(77)90027-X
  39. Xu, T., Xiang, T., Zhao, R. and Zhan, Y. (2010), "Nonlinear finite element analysis of circular concrete-filled steel tube structures", Struct. Eng. Mech., 35(3), 315-333. https://doi.org/10.12989/sem.2010.35.3.315
  40. Yang, Y.B. and Kuo, S.R. (1994), Theory and Analysis of Nonlinear Framed Structures, Singapore, Prentice Hall.
  41. Yang, Y.B. and Shieh, M.S. (1990), "Solution method for nonlinear problems with multiple critical points", AIAA J., 28(12), 2110-2116. https://doi.org/10.2514/3.10529
  42. Yang, Y.B., Yang, C.T., Chang, T.P. and Chang, P.K. (1997), "Effects of member buckling and yielding on ultimate strengths of space trusses", Eng. Struct., 19(2), 179-191. https://doi.org/10.1016/S0141-0296(96)00032-6

피인용 문헌

  1. Computing the structural buckling limit load by using dynamic relaxation method vol.81, 2016, https://doi.org/10.1016/j.ijnonlinmec.2016.01.022
  2. Mixing dynamic relaxation method with load factor and displacement increments vol.168, 2016, https://doi.org/10.1016/j.compstruc.2016.02.011
  3. On the equivalence of dynamic relaxation and the Newton-Raphson method vol.113, pp.9, 2018, https://doi.org/10.1002/nme.5707
  4. Computation of Nonunique Solutions for Trusses Undergoing Large Deflections vol.12, pp.03, 2015, https://doi.org/10.1142/S021987621550022X
  5. Global stability analysis of spatial structures based on Eigen-stiffness and structural Eigen-curve vol.141, 2018, https://doi.org/10.1016/j.jcsr.2017.11.003
  6. Using residual areas for geometrically nonlinear structural analysis vol.105, 2015, https://doi.org/10.1016/j.oceaneng.2015.06.043
  7. Geometrical nonlinear analysis of structures using residual variables vol.47, pp.2, 2019, https://doi.org/10.1080/15397734.2018.1545585
  8. Geometrically nonlinear analysis of shells by various dynamic relaxation methods vol.14, pp.5, 2017, https://doi.org/10.1108/wje-10-2016-0109
  9. In-plane nonlinear postbuckling analysis of circular arches using absolute nodal coordinate formulation with arc-length method vol.235, pp.3, 2021, https://doi.org/10.1177/1464419320971412