참고문헌
- Bathe, K.J. Dvorkin, E.N. (1983), "On the automatic solution of nonlinear finite element equations", Comput. Struct., 871-879.
- Bergan, P.G., Horrigmoe, G., Brakeland, B. and Soreide, T.H. (1978), "Solution techniques for non-linear finite element problems", Int. J. Num. Meth. Eng., 12(11), 1677-1696. https://doi.org/10.1002/nme.1620121106
- Cardona, A. and Huespe, A. (1998), "Continuation methods for tracing the equilibrium path in flexible mechanism analysis", Eng. Comput., 15(2), 190-220. https://doi.org/10.1108/02644409810202602
- Chen, H. and Blandford, G.E. (1993), "Work-increment-control method for non-linear analysis", Int. J. Num. Meth. Eng, 36(6), 909-930. https://doi.org/10.1002/nme.1620360603
- Clarke, M.J. and Hancock, G.J. (1990), "A study of incremental-iterative strategies for non-linear analyses", Int. J. Num. Meth. Eng, 29(7), 1365-1391. https://doi.org/10.1002/nme.1620290702
- Crisfield, M.A. (1997), Non-Linear Finite Element Analysis of Solids and Structures, Volume 2 Advanced Topics, John Wiley & Sons.
- Eduardo Nobre Lages, G.H.P. (1999), "Nonlinear finite element analysis using an Object-Oriented Philosophy-Application to Beam Elements and to the Cosserat Continuum", Eng. Comput., 15, 73-89. https://doi.org/10.1007/s003660050006
- Feenstra, P.H. and Schellekens, J.C.J. (1991), "Self-adaptive solution algorithm for a constrained Newton-Raphson method", Delft University of Technology, Department of Civil Engineering, Stevin laboratory- Mechanics & Structures Division, Netherlands.
- Geers, M.G.D. (1999), "Enhanced solution control for physically and geometrically non-linear problems. Part II-comparative performance analysis", Int. J. Num. Meth. Eng., 46(2), 205-230. https://doi.org/10.1002/(SICI)1097-0207(19990920)46:2<205::AID-NME669>3.0.CO;2-S
- Gorgun, H. and Yilmaz, S. (2012), "Geometrically nonlinear analysis of plane frames with semi-rigid connections accounting for shear deformations", Struct. Eng. Mech., 44(4), 539-569. https://doi.org/10.12989/sem.2012.44.4.539
- Harrison, H. (1983), "Elastic post-buckling response of plane frames", Instability and Plastic Collapse of Steel Structures, Ed. Morris, L.J., Granada, 56-65.
- Huang, B.Z. and Atluri, S.N. (1995), "A simple method to follow post-buckling paths in finite element analysis", Comput. Struct., 57(3), 477-489. https://doi.org/10.1016/0045-7949(94)00623-B
- Hrinda, G.A. (2007), "Geometrically nonlinear static analysis of 3D trusses using the arc-length method", Computational Methods and Experimental Measurements XIII, Prague, Czech Republic, 243-252.
- Kim, T.H., Cheon, J.H. and Shin, H.M (2009), "Evaluation of behavior and strength of prestressed concrete deep beams using nonlinear analysis", Comput. Concrete, 9(1), 63-79.
- Koohestani, K. and Kaveh, A. (2010), "Efficient buckling and free vibration analysis of cyclically repeated space truss structures", Finite Elem. Anal. Des., 46(10), 943-948. https://doi.org/10.1016/j.finel.2010.06.009
- Kuo Mo Hsiao and Fang Yu Hou (1987), "Nonlinear finite element analysis of elastic frames", Comput. Struct., 26(4), 693-701. https://doi.org/10.1016/0045-7949(87)90016-2
- Lee, S., Manuel, F.S. and Rossow, E.C. (1968), "Large deflections and stability of elastic frame", J. Eng. Mech. Div., 94(2), 521-548.
- Lee, S.J. and Kanok-Nukulchai, W. (1998), "A nine-node assumed strain finite element for large-deformation analysis of laminated shells", Int. J. Num. Meth. Eng., 42(5), 777-798. https://doi.org/10.1002/(SICI)1097-0207(19980715)42:5<777::AID-NME365>3.0.CO;2-P
- Loganathan, S. (1989), "Geometric and material nonlinear behaviour of space frame structures", Ph.D. Thesis, The University of Queensland.
- Meek, J.L. and Loganathan, S. (1989), "Large displacement analysis of space-frame structures", Comput. Meth. Appl. Mech. Eng., 72(1), 57-75. https://doi.org/10.1016/0045-7825(89)90121-7
- Meek, J.L. and Xue, Q. (1998), "A study on the instability problem for 3D frames", Comput. Meth. Appl. Mech. Eng., 158(3-4), 235-254. https://doi.org/10.1016/S0045-7825(98)00254-0
- Noor, A.K. and Peters, J.M. (1983), "Instability analysis of space trusses", Comput. Meth. Appl. Mech. Eng., 40(2), 199-218. https://doi.org/10.1016/0045-7825(83)90090-7
- Nooshin, H. and Disney P.L. (2000), "Formex configuration processing I", Int. J. Space Struct., 15(1), 1-52. https://doi.org/10.1260/0266351001494955
- Powell, G. and Simons, J. (1981), "Improved iteration strategy for nonlinear structures", Int. J. Num. Meth. Eng, 17(10), 1455-1467. https://doi.org/10.1002/nme.1620171003
- Ramesh, G. and Krishnamoorthy, C.S. (1994), "Inelastic post-buckling analysis of truss structures by dynamic relaxation method", Int. J. Num. Meth. Eng., 37(21), 3633-3657. https://doi.org/10.1002/nme.1620372105
- Rezaiee-Pajand, M., Tatar, M. and Moghaddasie, B. (2009), "Some geometrical bases for incremental-iterative methods", Int. J. Eng., Tran. B: Appl., 22(3), 245-256.
- Saffari, H., Fadaee, M.J. and Tabatabaei, R. (2008), "Nonlinear analysis of space trusses using modified normal flow algorithm", J. Struct. Eng., 134(6), 998-1005. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:6(998)
- Schellekens, J.C.J., Feenstra, P.H. and de Borst, R. (1992), "A self-adaptive load estimator based on strain energy", Computational Plasticity, Fundamentals and Applications, Eds. Owen, D.R.J., Onate, E. and Hinton, E.. CIMNE, Barcelona, Pineridge Press, 187-198.
- Schweizerhof, K.H. and Wriggers, P. (1986), "Consistent linearization for path following methods in nonlinear FE analysis", Comput. Meth. Appl. Mech. Eng., 59(3), 261-279. https://doi.org/10.1016/0045-7825(86)90001-0
- Simo, J.C. and Vu-Quoc, L. (1986), "A three-dimensional finite-strain rod model. part II: Computational aspects", Comput. Meth. Appl. Mech. Eng., 58(1), 79-116. https://doi.org/10.1016/0045-7825(86)90079-4
- Surana, K.S. (1982), "Geometrically non-linear formulation for the three dimensional solid-shell transition finite elements", Comput. Struct., 15(5), 549-566. https://doi.org/10.1016/0045-7949(82)90007-4
- Surana, K.S. (1983), "Geometrically nonlinear formulation for the curved shell elements", Int. J. Num. Meth. Eng., 19(4), 581-615. https://doi.org/10.1002/nme.1620190409
- Sze, K.Y., Chan, W.K. and Pian, T.H.H. (2002), "An eight-node hybrid-stress solid-shell element for geometric nonlinear analysis of elastic shells", Int. J. Num. Meth. Eng., 55, 853-878. https://doi.org/10.1002/nme.535
- Sze, K.Y. and Zheng, S.J. (1999), "A hybrid stress nine-node degenerated shell element for geometric nonlinear analysis", Comput. Mech., 23(5), 448-456. https://doi.org/10.1007/s004660050424
- Sze, K.Y. and Zheng, S.J. (2002), "A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses", Comput. Meth. Appl. Mech. Eng., 191(17-18), 1945-1966. https://doi.org/10.1016/S0045-7825(01)00362-0
- Thai, H.T. and Kim, S.E. (2009), "Large deflection inelastic analysis of space trusses using generalized displacement control method", J. Constr. Steel Res., 65(10-11), 1987-1994. https://doi.org/10.1016/j.jcsr.2009.06.012
- Williams, F.W. (1964), "An approach to the non-linear behaviour of the members of a rigid jointed plane framework with finite deflections", Q. J. Mech. Appl. Math., 17(4), 451-469. https://doi.org/10.1093/qjmam/17.4.451
- Wood, R.D. and Zienkiewicz, O.C. (1977), "Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells", Comput. Struct., 7(6), 725-735. https://doi.org/10.1016/0045-7949(77)90027-X
- Xu, T., Xiang, T., Zhao, R. and Zhan, Y. (2010), "Nonlinear finite element analysis of circular concrete-filled steel tube structures", Struct. Eng. Mech., 35(3), 315-333. https://doi.org/10.12989/sem.2010.35.3.315
- Yang, Y.B. and Kuo, S.R. (1994), Theory and Analysis of Nonlinear Framed Structures, Singapore, Prentice Hall.
- Yang, Y.B. and Shieh, M.S. (1990), "Solution method for nonlinear problems with multiple critical points", AIAA J., 28(12), 2110-2116. https://doi.org/10.2514/3.10529
- Yang, Y.B., Yang, C.T., Chang, T.P. and Chang, P.K. (1997), "Effects of member buckling and yielding on ultimate strengths of space trusses", Eng. Struct., 19(2), 179-191. https://doi.org/10.1016/S0141-0296(96)00032-6
피인용 문헌
- Computing the structural buckling limit load by using dynamic relaxation method vol.81, 2016, https://doi.org/10.1016/j.ijnonlinmec.2016.01.022
- Mixing dynamic relaxation method with load factor and displacement increments vol.168, 2016, https://doi.org/10.1016/j.compstruc.2016.02.011
- On the equivalence of dynamic relaxation and the Newton-Raphson method vol.113, pp.9, 2018, https://doi.org/10.1002/nme.5707
- Computation of Nonunique Solutions for Trusses Undergoing Large Deflections vol.12, pp.03, 2015, https://doi.org/10.1142/S021987621550022X
- Global stability analysis of spatial structures based on Eigen-stiffness and structural Eigen-curve vol.141, 2018, https://doi.org/10.1016/j.jcsr.2017.11.003
- Using residual areas for geometrically nonlinear structural analysis vol.105, 2015, https://doi.org/10.1016/j.oceaneng.2015.06.043
- Geometrical nonlinear analysis of structures using residual variables vol.47, pp.2, 2019, https://doi.org/10.1080/15397734.2018.1545585
- Geometrically nonlinear analysis of shells by various dynamic relaxation methods vol.14, pp.5, 2017, https://doi.org/10.1108/wje-10-2016-0109
- In-plane nonlinear postbuckling analysis of circular arches using absolute nodal coordinate formulation with arc-length method vol.235, pp.3, 2021, https://doi.org/10.1177/1464419320971412