DOI QR코드

DOI QR Code

Vibration of electrostatically actuated microbeam by means of homotopy perturbation method

  • Bayat, M. (Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University) ;
  • Pakar, I. (Young Researchers and Elites Club, Mashhad Branch, Islamic Azad University) ;
  • Emadi, A. (Department of Civil and Environmental Engineering, Tarbiat Modares University)
  • Received : 2013.05.04
  • Accepted : 2013.11.18
  • Published : 2013.12.25

Abstract

In this paper, it has been attempted to present a powerful analytical approach called Homotopy Perturbation Method (HPM). Free vibration of an electrostatically actuated microbeam is considered to study analytically. The effect of important parameters on the response of the system is considered. Some comparisons are presented to verify the results with other researcher's results and numerical solutions. It has been indicated that HPM could be easily extend to any nonlinear equation. We try to provide an easy method to achieve high accurate solution which valid for whole domain.

Keywords

References

  1. Agirseven, D. and Ozis, T. (2010), "An analytical study for Fisher type equations by using homotopy perturbation method". Comput. Math. Appl., 60 (3), 602-609. https://doi.org/10.1016/j.camwa.2010.05.006
  2. Bararnia, H., Ghasemi, E., Soleimani, S., Barari, A. and Ganji, D.D. (2011), "HPM-Pade method on natural convection of darcian fluid about a vertical full cone embedded in porous media", J. Porous Media, 14 (6), 545-553. https://doi.org/10.1615/JPorMedia.v14.i6.80
  3. Behiry, S.H., Hashish, H., El-Kalla, I.L. and Elsaid, A. (2007), "A new algorithm for the decomposition solution of nonlinear differential equations", Comput. Math. Appl., 54. (4), 459-466. https://doi.org/10.1016/j.camwa.2006.12.027
  4. Bayat, M., Pakar, I. and Domairry, G. (2012), "Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: a review", Latin Am. J. Solid. Struct., 9(2), 145-234.
  5. Bayat, M., Pakar, I. and Bayat, M. (2013a), "On the large amplitude free vibrations of axially loaded Euler-Bernoulli beams", Steel Compos. Struct., 14(1), 73-83. https://doi.org/10.12989/scs.2013.14.1.073
  6. Bayat, M. and Pakar, I. (2013b), "On the approximate analytical solution to non-linear oscillation systems", Shock Vib., 20(1), 43-52. https://doi.org/10.1155/2013/549213
  7. Bayat, M. and Pakar, I. (2013c), "Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses", Earthq. Eng. Vib., 12(3), 411-420. https://doi.org/10.1007/s11803-013-0182-0
  8. Bayat, M. and Pakar, I., Cveticanin, L. (2013d), "Nonlinear vibration of stringer shell by means of extended Hamiltonian approach", Arch. Appl. Mech., DOI:10.1007/s00419-013-0781-2 .
  9. Chen, S.S. and Chen, C.K. (2009), "Application of the differential transformation method to the free vibrations of strongly non-linear oscillators", Nonlin. Anal., Real World Appl., 10(2), 881-888. https://doi.org/10.1016/j.nonrwa.2005.06.010
  10. Filobello-Nino, U., Vazquez-Leal, H. and Castaneda-Sheissa, R. (2012), "An approximate solution of blasius equation by using HPM method", Asian J. Math. Statistic., 5(2), 50-59. https://doi.org/10.3923/ajms.2012.50.59
  11. Fu, Y., Zhang, J. and Wan, L. (2011), "Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS)", Curr. Appl. Phys., 11(3), 482-485. https://doi.org/10.1016/j.cap.2010.08.037
  12. Ganji, S.S., Ganji, D.D., Babazadeh, H. and Sadoughi, N. (2010), "Application of amplitude-frequency formulation to nonlinear oscillation system of the motion of a rigid rod rocking back", Math. Method. Appl. Sci., 33(2), 157-166.
  13. Ganji, D.D. (2006a), "The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer", Phys Lett. A, 355(4-5), 337-341. https://doi.org/10.1016/j.physleta.2006.02.056
  14. Ganji, D.D. and Sadighi, A. (2006b), "Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations", Int. J. Nonlin. Sci. Numer. Simul., 7(4), 411-418.
  15. Ghasemi, E., Soleimani, S., Barari, A., Bararnia, H. and Domairry, G., (2012), "Influence of uniform suction/injection on heat transfer of MHD Hiemenz flow in porous media", J. Eng. Mech., 138(1), 82-88. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000301
  16. He, J.H. (2008), "An improved amplitude-frequency formulation for nonlinear oscillators", Int. J. Nonlin. Sci. Numer. Simul., 9(2), 211-212.
  17. He, J.H. (2005), "Homotopy perturbation method for bifurcation of nonlinear problems", Int. J. Nonlin. Sci. Numer. Simul., 6(2), 207-208.
  18. He, J.H. (1999), "Variational iteration method: a kind of nonlinear analytical technique: some examples", Int. J. Nonlin. Mech., 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
  19. Ke, L.L., Yang, J., Kitipornchai, S. and Xiang, Y. (2009), "Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials", Mech. Adv. Mater. Struct., 16(6),488-502. https://doi.org/10.1080/15376490902781175
  20. Pakar, I. and Bayat, M. (2013), "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., 46(1), 137-151. https://doi.org/10.12989/sem.2013.46.1.137
  21. Qian, Y., Ren, D., Lai, S. and Chen, S. (2012), "Analytical approximations to nonlinear vibration of an electrostatically actuated microbeam", Commun. Nonlin. Sci. Numer. Simul., 17(4), 1947-1955. https://doi.org/10.1016/j.cnsns.2011.09.018
  22. Sharma, K., Bhasin, V., Vaze, K. and Ghosh, A. (2011), "Numerical simulation with finite element and artificial neural network of ball indentation for mechanical property estimation", Sadhana, 36(2), 181-192. https://doi.org/10.1007/s12046-011-0019-3
  23. Tsai, P.Y. and Chen, C.K. (2010), "An approximate analytic solution of the nonlinear Riccati differential equation", J. Franklin Inst., 347(10), 1850-1862. https://doi.org/10.1016/j.jfranklin.2010.10.005
  24. Vazquez-Leal, H., Castaneda-Sheissa, R., Filobello-Nino, U., Sarmiento-Reyes, A. and Sanchez Orea, J. (2012), "High accurate simple approximation of normal distribution related integrals", Math. Prob. Eng., Article ID 124029, 22.
  25. Zeng, D. and Lee, Y. (2009), "Analysis of strongly nonlinear oscillator using the max-min approach", Int. J. Nonlin. Sci. Numer. Simul., 10(10), 1361-1368.

Cited by

  1. Power Series Extender Method for the Solution of Nonlinear Differential Equations vol.2015, 2015, https://doi.org/10.1155/2015/717404
  2. Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221
  3. Nonlinearities distribution Laplace transform-homotopy perturbation method vol.3, pp.1, 2014, https://doi.org/10.1186/2193-1801-3-594
  4. Analytical Solutions for Systems of Singular Partial Differential-Algebraic Equations vol.2015, 2015, https://doi.org/10.1155/2015/752523
  5. A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
  6. Direct application of Padé approximant for solving nonlinear differential equations vol.3, pp.1, 2014, https://doi.org/10.1186/2193-1801-3-563
  7. Nonlinear Vibration Analysis Of Prebuckling And Postbuckling In Laminated Composite Beams vol.61, pp.2, 2015, https://doi.org/10.1515/ace-2015-0020
  8. Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1125
  9. Study of complex nonlinear vibrations by means of accurate analytical approach vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.721
  10. High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129
  11. Analysis of an electrically actuated fractional model of viscoelastic microbeams vol.52, pp.5, 2013, https://doi.org/10.12989/sem.2014.52.5.937
  12. Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation vol.61, pp.2, 2017, https://doi.org/10.12989/sem.2017.61.2.209
  13. Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation vol.24, pp.1, 2017, https://doi.org/10.12989/scs.2017.24.1.065
  14. Entrainment of Weakly Coupled Canonical Oscillators with Applications in Gradient Frequency Neural Networks Using Approximating Analytical Methods vol.8, pp.8, 2020, https://doi.org/10.3390/math8081312
  15. Theoretical and experimental studies of a novel nested oscillator with a high-damping characteristic vol.27, pp.13, 2013, https://doi.org/10.1177/1077546320943787