References
- Fenz, D.M. and Constantinou, M.C. (2008), "Spherical sliding isolation bearings with adaptive behavior: Theory", Earthq. Eng. Struct. Dyn., 37(2), 163-183. https://doi.org/10.1002/eqe.751
- Fenz, D.M. and Constantinou, M.C. (2008), "Spherical sliding isolation bearings with adaptive behavior: Experimental verification", Earthq. Eng. Struct. Dyn., 37(2), 185-205. https://doi.org/10.1002/eqe.750
- Fenz, D.M. and Constantinou, M.C. (2006), "Behaviour of the double concave Friction Pendulum bearing", Earthq. Eng. Struct. Dyn., 35(11), 1403-1424. https://doi.org/10.1002/eqe.589
- Bhuiyan, A.R. and Alam, M.S. (2013), "Seismic performance assessment of highway bridges equipped with superelastic shape memory alloy-based laminated rubber isolation bearing", Eng. Struct., 49, 396-407. https://doi.org/10.1016/j.engstruct.2012.11.022
- Hedayati, D.F. and Shahria, A.M. (2013), "Shape memory alloy wire-based smart natural rubber bearing", Smart Mater. Struct., 22(4), 1-17.
- Hwang, J.S., Wu, J.D., Pan, T.C. and Yang, G. (2002), "A mathematical hysteretic model for elastomeric isolation bearings", Earthq. Eng. Struct Dyn., 31(4), 771-789. https://doi.org/10.1002/eqe.120
- Mokha, A., Constantinou, M. and Reinhorn, A. (1991), "Further results on frictional properties of Teflon bearings", J. Struct. Eng., ASCE, 117(2), 622-626. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:2(622)
- Mokha, A., Constantinou, M. and Reinhorn, A. (1993), "Verification of friction model of Teflon bearings under triaxial load", J. Struct. Eng., ASCE, 119(1), 240-261. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:1(240)
- Constantinou, M., Mokha, A. and Reinhorn, A. (1990), "Teflon bearings in base isolation. II: modeling", J. Struct. Eng., ASCE, 116(2), 455-474. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(455)
- Hwang, J.S., Chang, K.C. and Lee, G.C. (1990), "Quasi-static and dynamic sliding characteristics of Teflon stainless steel interfaces", J. Struct. Eng., ASCE, 116(10), 2747-2762. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:10(2747)
- Mosqueda, G., Whittaker, A.S. and Fenves, G.L. (2004), "Characterization and modeling of friction pendulum bearings subjected to multiple components of excitation", J. Struct. Eng., ASCE, 130(3), 433-442. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(433)
- Ates, S. (2012), "Investigation of effectiveness of double concave friction pendulum bearings", Comput Concrete, 9(3), 195-214. https://doi.org/10.12989/cac.2012.9.3.195
- Yurdakul, M. and Ates, S. (2011), "Modeling of triple concave friction pendulum bearings for seismic isolation of buildings", Struct. Eng. Mech., 40(3), 315-334. https://doi.org/10.12989/sem.2011.40.3.315
- Abe, M., Yoshida, J. and Fujino, Y. (2004a), "Multiaxial behaviors of laminated rubber bearings and their modeling. I: experimental study", J. Struct. Eng., ASCE, 130(8), 1119-1132. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:8(1119)
- Abe, M., Yoshida, J. and Fujino, Y. (2004b), "Multiaxial behaviors of laminated rubber bearings and their modeling. II: modeling", J. Struct. Eng., ASCE, 130(8), 1133-1144. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:8(1133)
- Yamamoto, S., Kikuchi, S., Ueda, M. and Aiken, I.D. (2009), "A mechanical model for elastomeric seismic isolation bearings including the influence of axial load", Earthq. Eng. Struct. Dyn., 38(2), 157-180. https://doi.org/10.1002/eqe.847
- Tsai, C.S., Chiang, T.C., Chen, B.J. and Lin, S.B. (2003), "An advanced analytical model for high damping rubber bearings", Earthq. Eng. Struct. Dyn., 32(9), 1373-1387. https://doi.org/10.1002/eqe.278
- Yoshida, J., Abe, M. and Fujino, Y. (2004), "Constitutive model of high-damping rubber materials", J. Struct. Eng., ASCE, 130(2), 129-141.
- Becker, T.C. and Mahin, S.A. (2012), "Experimental and analytical study of the bi-directional behaviour of the triple friction pendulum isolator", Earthq. Eng. Struct. Dyn., 41(3), 355-373. https://doi.org/10.1002/eqe.1133
- Yamamoto, M., Minewaki, S., Yoneda, H. and Higashino, M. (2012), "Nonlinear behavior of high-damping rubber bearings under horizontal bidirectional loading: full-scale tests and analytical modeling", Earthq. Eng. Struct. Dyn., 41(13), 1845-1860. https://doi.org/10.1002/eqe.2161
Cited by
- Seismic mitigation of substation cable connected equipment using friction pendulum systems vol.72, pp.6, 2013, https://doi.org/10.12989/sem.2019.72.6.785