DOI QR코드

DOI QR Code

Exergy analysis of R717 high-efficiency OTEC cycle

R717용 고효율 해양온도차 발전 사이클의 엑서지 분석

  • Yoon, Jung-In (Department of Refrigeration and Air Conditioning Engineering, Pukyong National University) ;
  • Son, Chang-Hyo (Department of Refrigeration and Air Conditioning Engineering, Pukyong National University) ;
  • Yang, Dong-Il (Graduate School of Air Conditioning Engineering, Pukyong National University) ;
  • Kim, Hyeon-Uk (Graduate School of Air Conditioning Engineering, Pukyong National University) ;
  • Kim, Hyeon-Ju (Korea Advanced Institute of Science and Technology) ;
  • Lee, Ho-Saeng (Korea Advanced Institute of Science and Technology)
  • Received : 2013.08.14
  • Accepted : 2013.09.03
  • Published : 2013.11.30

Abstract

This paper describes an analysis on exergy efficiency of proposed high-efficiency R717 OTEC power system to optimize the design for the operating parameters of this system. The operating parameters considered in this study include outlet pressure in an evaporator and high turbine, inlet pressure condenser and vapor quality at cooler outlet, respectively. The main results are summarized as follows : As the outlet pressure in an evaporator and vapor quality at cooler outlet of R717 OTEC power system increases, the exergy efficiency of this system increases, respectively. But outlet pressure in the high turbine, inlet pressure in the condenser of R717 OTEC power system increases, the exergy efficiency of this system decreases, respectively. And, incase of exergy efficiency of this OTEC system, the effect of inlet pressure in an evaporator and outlet pressure in the high turbine on R717 OTEC power system is the largest and the lowest among operation parameters, respectively.

본 논문은 제안된 고효율 R717용 해양온도차 발전 시스템의 운전변수에 대한 최적의 설계를 위해 엑서지 효율을 이론적으로 분석하였다. 본 연구에서 고려된 작동변수로는 증발기 출구압력, 고단터빈 출구압력, 응축기 입구압력 그리고 냉각기 출구건도이다. 분석한 결과를 요약하면 다음과 같다. R717용 OTEC 발전 사이클의 증발기 출구압력, 냉각기 출구건도가 증가할수록 엑서지 효율은 증가한다. 그러나 고단터빈 출구압력, 응축기 입구압력이 증가할수록 엑서지 효율이 감소한다. 그리고 이러한 작동변수들 중에서 증발기 출구압력이 R717용 OTEC 발전 사이클의 엑서지 효율에 가장 크게 영향을 미치고, 고단터빈 출구압력이 가장 적게 영향을 미친다.

Keywords

References

  1. J. H. Heo, H. U. Kim, D. I. Yang, C. H. Son, J. I. Yoon, and G. H. Choi, "Performance characteristics of a R744 OTEC power system using high temperature heat source", The Korean Society of Marine Engineering, pp. 266-267, 2013 (in Korean).
  2. H. S. Lee, H. J. Kim, D. H. Jung, and D. S. Moon, "A study on the improvement for cycle efficiency of closed-type OTEC", Journal of the Korean Society of Marine Engineering, vol. 25, no. 1, pp. 80-84, 2011 (in Korean).
  3. J. I. Yoon, C. H. Son, S. M. Baek, H. J. Kim, and H. S. Lee, "Performance characteristic of R744 OTEC power cycle with operation parameters", Journal of the Korean Society of Marine Engineering, vol. 36, no. 5, pp. 10-14, 2012 (in Korean).
  4. C. H. Tseng, K. Y. Kao, and J. C. Yang, "Optimal design of a pilot OTEC power plant in Taiwan", Journal of Energy Resources Technology, vol. 113, no. 4, pp. 294-299, 1991. https://doi.org/10.1115/1.2905914
  5. R. H. Yeh, T. Z. Su, and M. S. Yang, "Maximum output of an OTEC power plant", Ocean Engineering, vol. 32, no. 5-6, pp. 685-700, 2005. https://doi.org/10.1016/j.oceaneng.2004.08.011
  6. N. J. Kim, C. N. Kim, and W. Chun, "Using the condenser effluent from a nuclear power plant for ocean thermal energy conversion (OTEC)", International Communications in Heat and Mass Transfer, vol. 36, no. 10, pp. 1008-1013, 2009. https://doi.org/10.1016/j.icheatmasstransfer.2009.08.001
  7. T. J. Rabas, C. B. Panchal, and H. C. Stevens, "Integration and optimization of the gas removal system for hybrid-cycle OTEC power plants", Journal of Solar Energy Engineering, vol. 112, no. 1, pp. 19-28, 1990. https://doi.org/10.1115/1.2930753
  8. A. I. Kalina, "Combined cycle system with novel bottoming cycle", Journal of Engineering for Gas Turbines and Power, vol. 106, no. 4, pp. 737-742, 1984. https://doi.org/10.1115/1.3239632
  9. H. Uehara, A. Miyara, Y. Ikegami, and T. Nakaoka, "Performance analysis of an OTEC plant and a desalination plant using an integrated hybrid cycle", Journal of Solar Energy Engineering, vol. 118, no. 2, pp. 115-122, 1996. https://doi.org/10.1115/1.2847976
  10. Z. Shengjun, W. Huaixin, and G. Tao, "Performance comparison and parametric optimization of subscritical organic rankine cycle( ORC) and transcritical power cycle system for low-temperature geothermal power generation", Applied energy, vol. 88, no. 8, pp. 2740-2754, 2011. https://doi.org/10.1016/j.apenergy.2011.02.034
  11. T. Dylan, "Ocean thermal energy conversion: current overview and future outlook", Renew. Energy, vol. 6, no. 3, pp. 367-373, 1994.
  12. D. Y. Peng and D. B. Robinson, "A new two-constant equation of state", Industrial and Engineering Chemistry Fundamentals, vol. 15, no. 1, pp. 59-64, 1976. https://doi.org/10.1021/i160057a011
  13. Aspen HYSYS. Version 8.0, Aspen Technology Inc, 2013.

Cited by

  1. The numerical analysis of performance of OTEC system with vapor-vapor ejector vol.34, pp.4, 2014, https://doi.org/10.7836/kses.2014.34.4.045
  2. Improvement of Efficiency of Kalina Cycle and Performance Comparison vol.35, pp.5, 2015, https://doi.org/10.7836/kses.2015.35.5.011
  3. R290 냉매를 이용한 수소 충전소 냉각시스템 엑서지 분석 및 공정 최적화 vol.32, pp.5, 2021, https://doi.org/10.7316/khnes.2021.32.5.356