DOI QR코드

DOI QR Code

Characteristic Analysis of Cyclic Voltammetry on a Self-Assembled Mono-layer Electrode

자가조립 단층 전극에 대한 순환전위법의 특성해석

  • Cho, Hana (Department of Chemical Engineering, Kwangwoon University) ;
  • Yoon, Do-Young (Department of Chemical Engineering, Kwangwoon University)
  • Received : 2013.07.22
  • Accepted : 2013.11.30
  • Published : 2013.11.30

Abstract

In this paper, we have investigated the characteristics of cyclic voltammetry of a self-assembled mono-layer(SAM) electrode which was modified by 3-Mercaptopropionic acid (3-MPA) on gold nanoparticle(AuNP)-deposited electrode. Also, the transport phenomena of electrons and ions around the electrode have been analyzed. The governing equation and its boundary conditions by adopting the semi-infinite diffusion model were formulated for the mass-transfer dominant system. In order to obtain the numerical solutions of cyclic voltammetry(CV) on SAM electrodes, MATLAB program was implemented by applying the explicit finite difference method. Resulting CV program for the SAM-modified electrode was verified in good agreements with the experimental CV results for the 3-MPA on AuNP electrode.

본 연구에서는 금 나노입자로 전착된 전극위에 3-MPA로 개질된 자가조립 단층 전극의 순환전위법의 특성을 조사하였다. 또한 전극 주변에서 전자와 이온의 이동현상을 해석하였다. 반무한 확산모델을 채택하여, 물질전달 지배계에 대하여 지배방정식과 경계조건을 유도하였다. 자가조립단층 전극에 대한 순환전위법의 수치해를 구하기 위하여, 양함수 유한차분법을 적용하여 MATLAB 프로그램을 작성하여 해를 구현하였다. 자가조립으로 개질된 전극에 대한 본 CV 용 프로그램은 3-MPA으로 개질된 금 나노입자 SAM 전극의 순환전위법 실험결과를 잘 설명하고 있음을 확인할 수 있었다.

Keywords

References

  1. P. N. Bartlett, 'Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications', John Wiley & Sons, Ltd., Chichester (2008).
  2. M. Umana and J. Waller, 'Protein-modified electrodes. The glucose oxidase/polypyrrole system' Anal. Chem., 58(14), 2979 (1986) https://doi.org/10.1021/ac00127a018
  3. R. W. Murray, A. G. Ewing and R. A. Durst, 'Chemically modified electrodes molecular design for electroanalysis' Anal. Chem., 59(5), 379 (1987). https://doi.org/10.1021/ac00129a035
  4. A. A. Lihi, B. M. Michal, G. Ehud and R. Judith, 'Characterization of peptide-nanostructure-modified electrodes and their application for ultrasensitive environmental monitoring', small, 6(7), 825 (2010). https://doi.org/10.1002/smll.200902186
  5. R. S. Nicholson and I. Shain, 'Theory of stationary electrode polarography single scan and cyclic methods applied to reversible irreversible and kinetic system' Anal. Chem., 36, 706 (1964). https://doi.org/10.1021/ac60210a007
  6. B. Speiser, 'From cyclic voltammetry to scanning electrochemical microscopy: Modern electroanalytical methods to study organic compounds, materials, and reactions' Curr. Org. Chem, 3, 171 (1999).
  7. R. S. Nicholson, 'Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics' Anal. Chem., 37, 1351 (1965). https://doi.org/10.1021/ac60230a016
  8. N. P. C. Stevens and A. C. Fisher, 'Finite element simulations in electrochemistry. 2. Hydrodynamic voltammetry' J. Phys. Chem. B, 101, 8259 (1997). https://doi.org/10.1021/jp971529u
  9. P. J. Rodgers and S. Amemiya, 'Cyclic voltammetry at micropipet electrodes for the study of ion-transfer kinetics at liquid/liquid interfaces' Anal. Chem., 79, 9276 (2007). https://doi.org/10.1021/ac0711642
  10. J. Guo and E. Lindner, 'Cyclic voltammograms at coplanar and shallow recessed microdisk electrode arrays: Guidelines for design and experiment' Anal. Chem., 81, 130 (2009). https://doi.org/10.1021/ac801592j
  11. D. K. Gosser and F. Zhang, 'A PC-based general program for the simulation and analysis of cyclic voltammetric experiments' Talanta, 38, 715 (1991). https://doi.org/10.1016/0039-9140(91)80191-2
  12. H. N. Cho, T. Y. Kim and D. Y. Yoon, 'A study on the computational simulation of cyclic voltammetry using semi-infinite diffusion model' J. KES, 14, 138 (2011).
  13. D. Hobara , Y. Uno and T. Kakiuchi, 'Immobilization of horseradish peroxidase on nanometre-scale domains of binary self-assembled monolayers formed from dithiobis-N-succinimidyl propionate and 1-tetradecanethiol on Au(111)' Phys. Chem. Chem. Phys., 3, 3437 (2001). https://doi.org/10.1039/b101807h
  14. Z. Dai and H. Ju, 'Effect of chain length on the surface properties of x-carboxy alkanethiol self-assembled monolayers' Phys. Chem. Chem. Phys., 3, 3769 (2001). https://doi.org/10.1039/b104570a
  15. S. W. Feldberg, 'Optimization of explicit finite-difference simulation of electrochemical phenomena utilizing an exponentially expanded space grid: Refinement of the Joslin-Pletcher algorithm' J. Electroanal Chem, 127, 1 (1981). https://doi.org/10.1016/S0022-0728(81)80462-7
  16. D. K. Gosser, Jr, "Cyclic Voltammetry : simulation and analysis of reaction mechanisms", VCH, New York (1993).
  17. A. Molina, C. Serna, Q. Li, E. Laborda, C. Batchelor-McAuley, and R. G. Compton, 'Analytical solutions for the study of multielectron transfer processes by staircase, cyclic, and differential voltammetries at disc microelectrodes' J. Phys. Chem. C, 116, 11470 (2012). https://doi.org/10.1021/jp302075t
  18. B. W. Park, D. Y. Yoon and D. S. Kim, 'Formation and modification of a binary self-assembled monolayer on a nanostructured gold electrode via selective desorption and its structural characterization by electrochemical impedance spectroscopy," J. Electroanal. Chem. 661, 329 (2011). https://doi.org/10.1016/j.jelechem.2011.08.013
  19. R. K. Shervedani and S. Pourbeyram. 'Zirconiumimmobilized on gold-mercaptopropionicacidself-assembled monolayer for trace determination of phosphate in blood serum by using CV, EIS, and OSWV' Biosensors and Bioelectronics, 24(7), 2199 (2009). https://doi.org/10.1016/j.bios.2008.11.027
  20. B. W. Park, D. S. Kim, and D. Y. Yoon, 'Surface modification of gold electrode with gold nanoparticles and mixed self-assembled monolayers for enzyme biosensors' Korean J. Chem. Eng., 28(1), 64 (2011). https://doi.org/10.1007/s11814-010-0349-6
  21. Z. Dai and H. Ju, Phys. Chem. Chem. Phys., "Effect of chain length on the surface properties of x-carboxy alkanethiol self-assembled monolayers", 3, 3769 (2001). https://doi.org/10.1039/b104570a

Cited by

  1. Effects of the Polarization Resistance on Cyclic Voltammograms for an Electrochemical-Chemical Reaction vol.6, pp.4, 2015, https://doi.org/10.5229/JECST.2015.6.4.146
  2. Consideration on the Non-linearity of Warburg Impedance for Fourier Transform Electrochemical Impedance Spectroscopy vol.17, pp.2, 2014, https://doi.org/10.5229/JKES.2014.17.2.119