DOI QR코드

DOI QR Code

Development of Pore-filled Ion-exchange Membranes for Efficient All Vanadium Redox Flow Batteries

  • Kang, Moon-Sung (Department of Environmental Engineering, Sangmyung University)
  • Received : 2013.11.15
  • Accepted : 2013.11.19
  • Published : 2013.11.30

Abstract

Thin pore-filled cation and anion-exchange membranes (PFCEM and PFAEMs, $t_m=25-30{\mu}m$) were prepared using a porous polymeric substrate for efficient all-vanadium redox flow battery (VRB). The electrochemical and charge-discharge performances of the membranes have been systematically investigated and compared with those of commercially available ion-exchange membranes. The pore-filled membranes were shown to have higher permselectivity as well as lower electrical resistances than those of the commercial membranes. In addition, the VRBs employing the pore-filled membranes exhibited the respectable charge-discharge performances, showing the energy efficiencies (EE) of 82.4% and 84.9% for the PFCEM and PFAEM, respectively (cf. EE = 87.2% for Nafion 1135). The results demonstrated that the pore-filled ion-exchange membranes could be successfully used in VRBs as an efficient separator by replacing expensive Nafion membrane.

Keywords

References

  1. M. Skyllas-Kazacos and F. Grossmith, 'Efficient vanadium redox flow cell' J. Electrochem. Soc., 134, 2950 (1987). https://doi.org/10.1149/1.2100321
  2. G. J. Hwang and H. Ohya, 'Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery' J. Membr. Sci., 120, 55 (1996). https://doi.org/10.1016/0376-7388(96)00135-4
  3. W. Wang, Q. Luo, B. Li, X. Wei, L. Li, and Z. Yang, 'Recent progress in redox flow battery research and development' Adv. Funct. Mater., 23, 970 (2013). https://doi.org/10.1002/adfm.201200694
  4. G. J. Hwang and H. Ohya, 'Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery' J. Membr. Sci., 132, 55 (1997). https://doi.org/10.1016/S0376-7388(97)00040-9
  5. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, 'Electrochemical energy storage for green grid' Chemical reviews, 111, 3021 (2011). https://doi.org/10.1021/cr1003612
  6. M. Vijayakumar, B. Schwenzer, S. Kim, Z. Yang, S. Thevuthasan, J. Liu, G. L. Graff, and J. Hu, 'Investigation of local environments in Nafion-$SiO_2$ composite membranes used in vanadium redox flow batteries' Solid State Nuclear Magnetic Resonance, 42, 71 (2012). https://doi.org/10.1016/j.ssnmr.2011.11.005
  7. C. Sun, J. Chen, H. Zhang, X. Han, and Q. Luo, 'Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery' J. Power Sources, 195, 890 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.041
  8. Y. Lorrain, G. Pourcelly, and C. Gavach, 'Influence of cations on the proton leakage through anion-exchange membranes' J. Membr. Sci., 110, 181 (1996). https://doi.org/10.1016/0376-7388(95)00246-4
  9. T. Mohammadi and M. Skyllas-Kazacos, 'Use of polyelectrolyte for incorporation of ion-exchange groups in composite membranes for vanadium redox flow battery applications' J. Power Sources, 56, 91 (1995). https://doi.org/10.1016/0378-7753(95)80014-8
  10. T. Mohammadi, S. C. Chieng, and M. Skyllas Kazacos, 'Water transport study across commercial ion exchange membranes in the vanadium redox flow battery' J. Membr. Sci., 133, 151 (1997). https://doi.org/10.1016/S0376-7388(97)00092-6
  11. J. Qiu, M. Li, J. Ni, M. Zhai, J. Peng, L. Xu, H. Zhou, J. Li, and G. Wei, 'Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery' J. Membr. Sci., 297, 174 (2007). https://doi.org/10.1016/j.memsci.2007.03.042
  12. T. Sukkar and M. Skyllas-Kazacos, 'Modification of membranes using polyelectrolytes to improve water transfer properties in the vanadium redox battery' J. Membr. Sci., 222, 249 (2003). https://doi.org/10.1016/S0376-7388(03)00316-8
  13. D. Xing, S. Zhang, C. Yin, B. Zhang, and X. Jian, 'Effect of amination agent on the properties of quaternized poly(phthalazinone ether sulfone) anion exchange membrane for vanadium redox flow battery application' J. Membr. Sci., 354, 68 (2010). https://doi.org/10.1016/j.memsci.2010.02.064
  14. M. Vijayakumar, M. S. Bhuvaneswari, P. Nachimuthu, B. Schwenzer, S. Kim, Z. Yang, J. Liu, G. L. Graff, S. Thevuthasan, and J. Hu, 'Spectroscopic investigations of the fouling process on Nafion membranes in vanadiumredox flow batteries' J. Membr. Sci., 366, 325 (2011). https://doi.org/10.1016/j.memsci.2010.10.018
  15. T. Yamaguchi, S. Nakao, and S. Kimura, 'Plasma-graft filling polymerization: preparation of a new type of pervaporation membrane for organic liquid mixtures' Macromolecules, 24, 5522 (1991). https://doi.org/10.1021/ma00020a006
  16. T. Yamaguchi, F. Miyata, and S. Nakao, 'Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell' J. Membr. Sci., 214, 283 (2003). https://doi.org/10.1016/S0376-7388(02)00579-3
  17. S.-J. Seo, B.-C. Kim, K.-W. Sung, J. Shim, J.-D. Jeon, K.-H. Shin, S.-H. Shin, S.-H. Yun, J.-Y. Lee, and S.-H. Moon, 'Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications' J. Membr. Sci., 428, 17 (2013). https://doi.org/10.1016/j.memsci.2012.11.027
  18. W. Wei, H. Zhang, X. Li, Z. Mai, and H. Zhang, 'Poly(tetrafluoroethylene) reinforced sulfonated poly (ether ether ketone) membranes for vanadium redox flow battery application' J. Power Sources, 208, 421 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.047
  19. X. Li, H. Zhang, Z. Mai, H. Zhang, and I. Vankelecom, 'Ion exchange membranes for vanadium redox flow battery (VRB) applications' Energy Environ. Sci., 4, 1147 (2011). https://doi.org/10.1039/c0ee00770f
  20. T. Sukkar and M. Skyllas-Kazacos, 'Modification of membranes using polyelectrolytes to improve water transfer properties in the vanadium redox battery' J. Membr. Sci., 222, 249 (2003). https://doi.org/10.1016/S0376-7388(03)00316-8
  21. T. Mohammadi and M. Skyllas-Kazacos, 'Modification of anion-exchange membranes for vanadium redox flow battery applications' J. Power Sources, 63, 179 (1996). https://doi.org/10.1016/S0378-7753(96)02463-9
  22. D.-H. Kim, S.-J. Seo, M.-J. Lee, J.-S. Park, S.-H. Moon, Y. S. Kang, Y.-W. Choi, and M.-S. Kang, 'Pore-filled anion-exchange membranes for non-aqueous redox flow batteries with dual-metal-complex redox shuttles' J. Membr. Sci., in revision (2014).
  23. J. Ran, L. Wu, J. R. Varcoe, A. L. Ong, and S. D. Poynton, T. Xu, 'Development of imidazolium-type alkaline anion exchange membranes for fuel cell application' J. Membr. Sci., 415-416, 242 (2012). https://doi.org/10.1016/j.memsci.2012.05.006
  24. M.-S. Kang, Y.-J. Choi, and S.-H. Moon, 'Water-swollen cation-exchange membranes prepared using poly(vinyl alcohol) (PVA)/poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)' J. Membr. Sci., 207, 157 (2002). https://doi.org/10.1016/S0376-7388(02)00172-2
  25. Y. Tanaka, Ion Exchange Membranes: Fundamentals and Application, Elsevier, Amsterdam, 2007.
  26. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic, Dordrecht, 1996.
  27. J. J. Krol, M. Wessling, and H. Strathmann, 'Concentration polarization with monopolar ion exchange membranes: current-voltage curves and water dissociation' J. Membr. Sci., 162, 145 (1999). https://doi.org/10.1016/S0376-7388(99)00133-7

Cited by

  1. Pore-filled Anion-exchange Membranes with High Fixed Ion Concentration for All-vanadium Redox Flow Battery Applications vol.47, pp.11, 2018, https://doi.org/10.1246/cl.180668