References
- Burbidge, M.C. (1982), "A case study review of settlements on granular soil", M.Sc. Thesis, Imperial College of Science and Technology, University of London, London.
- Burland, J.B. and Burbidge, M.C. (1985), "Settlement of Foundations on Sand and Gravel", P.I. Civil Eng., 78(1), 1325-1381. https://doi.org/10.1680/iicep.1985.1058
- Caudill, M. (1988), Neural Networks Primer, Part III. Al Expert, 3(6), pp. 53-59.
- Choobbasti, A.J., Farrokhzad, F. and Barari, A. (2009), "Prediction of slope stability using artificial neural network (A case study: Noabad, Mazandaran, Iran)", Arab. J. Sci. Eng., 2, 311-319.
- Coduto, D.P. (1994), Foundation Design Principles and Practices, Prentice-Hall, Englewood Cliffs, N.J.
- Demuth, H., Beale, M. and Hagan, M. (2006), Neural network toolbox user's guide, The Math Works, Inc., Natick, Mass.
- Erzin, Y. (2007) "Artificial neural networks approach for swell pressure versus soil suction behavior", Can. Geotech. J., 44(10), 1215-1223. https://doi.org/10.1139/T07-052
- Erzin, Y. and Gunes, N. (2011), "The prediction of swell percent and swell pressure by using neural networks", Math. Comput. App., 16(2), pp. 425-436.
- Erzin, Y., Gumaste, S.D., Gupta, A.K. and Singh, D.N. (2009), "Artificial neural network (ANN) models for determining hydraulic conductivity of compacted fine grained soils", Can. Geotech. J., 46(8), 955-968. https://doi.org/10.1139/T09-035
- Erzin, Y., Rao B.H. and Singh, D.N. (2008), "Artificial neural networks for predicting soil thermal Resistivity", Int. J. Therm. Sci., 47(10), 1347-1358. https://doi.org/10.1016/j.ijthermalsci.2007.11.001
- Erzin, Y., Rao, B.H., Patel, A., Gumaste, S.D., Gupta, A.K. and Singh, D.N. (2010), "Artificial neural network models for predicting of electrical resistivity of soils from their thermal resistivity", Int. J. Therm. Sci., 49(1), 118-130. https://doi.org/10.1016/j.ijthermalsci.2009.06.008
- Fausett, L.V. (1994), Fundamentals Neural Networks: Architecture, Algorithms, and Applications, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- Garson, G.D. (1991), "Interpreting neural-network connection weights", AI Expert, 6(7), 47-51.
- Gul, T.O. (2011), "The use of neural networks for the prediction of the settlement of pad and one- way strip footings on cohesionless soils based on Standart Penetration Test", MSc. Thesis, Celal Bayar University Manisa. [In Turkish]
- Hamid, A., Dwivedi, U., Singh, T.N., Gopi Krishna, M., Tondon, V. and Singh, P.B. (2003), Artificial Neural Networks in Predicting Optimum Renal Stone Fragmentation by Extracorporeal Shock Wave Llithotripsy - A Primary Study, BJU International, Blackwell Synergy, 91, 821-824. https://doi.org/10.1046/j.1464-410X.2003.04230.x
- Kanibir, A., Ulusay, R. and Aydan, O. (2006), "Liquefaction-induced ground deformations on a lake shore (Turkey) and empirical equations for their prediction", IAEG 2006, Paper 362.
- Khandelwal, M. and Singh, T.N. (2009), "Prediction of blast-induced ground vibration using artificial neural network", Int. J. Rock Mech. Min., 46(7), 1214-1222. https://doi.org/10.1016/j.ijrmms.2009.03.004
- Meyerhof, G.G. (1965), "Shallow foundations", J. SMFE Div., ASCE, 91(SM2), 21-31.
- Mohan, S. and Sreeram, J. (2005), "Application of neural network model for the containment of groundwater contamination", Land Contam. Reclam., 13(1), 81-98. https://doi.org/10.2462/09670513.657
- Orbanic, P. and Fajdiga, M. (2003), "A neural network approach to describing the fretting fatigue in aluminum-steel couplings", Int. J. Fatigue, 25, 201-207. https://doi.org/10.1016/S0142-1123(02)00113-5
- Parry, R.H.G. (1971), "A direct method of estimating settlements in sands from standard penetration tests", Proceeding of Symposium on Interaction of Structure and Foundations, Midland Soil Mechanics and Foundation Engineering Society, Birmingham, 29-37.
- Peck, R.B., Hanson, W.E. and Thornburn, T.H. (1974), Foundation Engineering, Wiley, NY.
- Ramu, K. and Madhav, M.R. (2010), "Response of rigid footing on reinforced granular fill over soft soil", Geomech. Eng., Int. J., 2(4), 281-302 https://doi.org/10.12989/gae.2010.2.4.281
- Sakellariou, M.G. and Ferentinou, M.D. (2005), "A study of slope stability prediction using neural networks". J. Geotech. Geol. Eng., 23(4), 419-445. https://doi.org/10.1007/s10706-004-8680-5
- Schmertmann, J.H. (1970), "Static cone to compute static settlement over sand", J. Soil Mech. Found. Div., Am. Soc. Civ. Eng., 96(SM3), 1011-1043.
- Shahin, M.A., Maier, H.R. and Jaksa, M.B. (2002), "Predicting settlement of shallow foundations using neural networks", J. Geotech. Geoenv., 128(9), 785-93. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(785)
- Shahin, M.A., Maier, H.R. and Jaksa, M.B., (2004), "Data division for developing neural networks applied to geotechnical engineering" J. Comput. Civil Eng., 18(2), 105-114. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(105)
- Singh, T.N., Kanchan R., Saigal, K., and Verma, A.K. (2004), "Prediction of p-wave velocity and anisotropic properties of rock using artificial neural networks technique", J. Sci. Ind. Res. India, 63(1), 32-38.
- Singh, T.N. and Singh, V. (2005), "An intelligent approach to prediction and control ground vibration in mines", J. Geotec. Geol. Eng., 23(3), 249-262. https://doi.org/10.1007/s10706-004-7068-x
- Singh, T.N. and Verma, A.K. (2005), "Prediction of creep characteristics of rock under varying environment", Environ. Geol., 48(4-5), 559-568. https://doi.org/10.1007/s00254-005-1312-4
- Singh, V.K., Singh, D. and Singh, T.N. (2001), ''Prediction of strength properties of some schistose rock, Int. J. Rock Mech. Min., 38(2), 269-284. https://doi.org/10.1016/S1365-1609(00)00078-2
- Smith, M. (1993), Neural Networks for Modeling, Van Nostrand Reinhold, New York.
- Stone, M. (1974), "Cross-validatory choice and assessment of statistical predictions", J. Royal Statis. Soc. Series B. Methodological, 36(2), 111-147.
- Terzaghi, K. and Peck, R.D. (1967), Soil Mechanics in Foundation Engineering Practice, Wiley, New York.
- Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice, (3rd Edition), John Wiley & Sons Inc., New York.
- Tuysuz, C. (2010), "The effect of the virtual laboratory on the students' achievement and attitude in chemistry", IOJES, 2(1), 37-53.
- Twomey, M. and Smith, A.E. (1997), Validation and Verification, Artificial Neural Networks for Civil Engineers: Fundamentals and Applications, (N. Kartam, I. Flood, and J.H. Garrett, eds.), ASCE, New York, pp. 44-64.
- Zurada, J.M. (1992), Introduction to Artificial Neural Systems, West Publishing Company, St. Paul.
Cited by
- The use of neural networks for CPT-based liquefaction screening vol.74, pp.1, 2015, https://doi.org/10.1007/s10064-014-0606-8
- Use of neural networks for the prediction of the CBR value of some Aegean sands vol.27, pp.5, 2016, https://doi.org/10.1007/s00521-015-1943-7
- The use of neural networks for the prediction of cone penetration resistance of silty sands vol.28, pp.S1, 2017, https://doi.org/10.1007/s00521-016-2371-z
- Predicting CBR Value of Stabilized Pond Ash with Lime and Lime Sludge Using ANN and MR Models vol.4, pp.1, 2018, https://doi.org/10.1007/s40891-017-0125-3
- An intelligent based-model role to simulate the factor of safe slope by support vector regression pp.1435-5663, 2019, https://doi.org/10.1007/s00366-018-0677-4
- On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence vol.12, pp.3, 2013, https://doi.org/10.12989/gae.2017.12.3.441
- A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models vol.6, pp.4, 2017, https://doi.org/10.12989/csm.2017.6.4.417
- Footing settlement formula based on multi-variable regression analyses vol.17, pp.1, 2019, https://doi.org/10.12989/gae.2019.17.1.011
- Spatial interpolation of SPT data and prediction of consolidation of clay by ANN method vol.8, pp.6, 2013, https://doi.org/10.12989/csm.2019.8.6.523
- Modeling of UCS value of stabilized pond ashes using adaptive neuro-fuzzy inference system and artificial neural network vol.24, pp.19, 2013, https://doi.org/10.1007/s00500-020-04806-x