DOI QR코드

DOI QR Code

A Proposal of Flow Limit for Soils at Zero Undrained Shear Strength

흙의 비배수전단강도가 0이 되는 함수비인 흐름한계의 제안

  • 박성식 (경북대학교 공과대학 건축토목공학부 토목공학전공) ;
  • 농쩐쩐 (경북대학교 공과대학 건축토목공학부 토목공학전공)
  • Received : 2013.06.18
  • Accepted : 2013.09.12
  • Published : 2013.11.30

Abstract

When a slope failure or a debris flow occurs, a shear strength on failure plane becomes nearly zero and soil begins to flow like a non-cohesive liquid. A consistency of cohesive soils changes as a water content increases. Even a cohesive soil existing at liquid limit state has a small amount of shear strength. In this study, a water content, at which a shear strength of cohesive soils is zero and then cohesive soils will start to flow, was proposed. Three types of clays (kaolinite, bentonite and kaolinite (50%)+bentonite (50%)) were mixed with three different solutions (distilled water, sea water and microbial solution) at liquid limit state and then their water contents were increased step by step. Then, their undrained shear strength was measured using a portable vane shear device called Torvane. The ranges of undrained shear strength at liquid and plastic limits are 3.6-9.2 kPa and 24-45 kPa, respectively. On the other hand, the water content that corresponds to the value of the undrained shear strength changing most rapidly is called flow water content. The flow limit refers to the water content when undrained shear strength of cohesive soils is zero. In order to investigate the relationship between liquid limit and flow limit, the cohesive index was defined as a value of the difference between flow limit and liquid limit. The new plasticity index was defined as the value of difference between flow limit and plastic limit. The new liquidity index was also defined using flow limit. The values of flow limit are 1.5-2 times higher than those of liquid limit. At the same time, the values of new plasticity index are 2-5.5 times higher than those of original plasticity index.

사면 내 토사가 붕괴되거나 토석류가 발생하는 경우 파괴면에 작용하는 전단강도는 0에 가깝게 되면서 토사가 비점성 액체와 같이 유동한다. 점성토는 함수비 증가에 따라 그 연경도가 달라지며 액체상태로 바뀌는 액성한계에서 도 약간의 전단강도를 가진다. 본 연구에서는 점성토의 전단강도가 0이 되어 흐름을 유발하는 함수비를 찾고자 하였 다. 카올리나이트, 벤토나이트, 그리고 카올리나이트(50%)+벤토나이트(50%)와 같은 세 종류의 점토에 혼합수로 증류 수, 해수, 또는 미생물용액을 혼합하여 액성한계 상태로 만든 다음 함수비를 단계적으로 증가시키면서 토베인 시험기 를 이용하여 비배수전단강도를 측정하였다. 액성한계와 소성한계에서 비배수전단강도의 범위는 각각 3.6-9.2kPa와 24-45kPa 정도이었다. 한편 측정 결과로부터 비배수전단강도가 급격하게 변화하는 값에 해당하는 함수비를 흐름함수 비(Flow Water content)로 정의하였으며, 비배수전단강도가 0이 될 때의 함수비를 흐름한계(Flow Limit)로 정의하였다. 그리고 흐름한계와 액성한계의 상관관계를 살펴보기 위하여 흐름한계와 액성한계의 차이를 점성지수(Cohesive Index) 로 정의하였다. 또한 흐름한계와 소성한계의 차이를 새로운 소성지수(New Plasticity Index)로 정의하였으며, 흐름한계를 이용하여 새로운 액성지수(New Liquidity Index)도 정의하였다. 흐름한계(Flow Limit)는 액성한계보다 1.5-2배 정도 높은 값을 보였으며, 새로운 소성지수는 기존 소성지수보다 2-5.5배 정도 높았다.

Keywords

References

  1. Ahn, T. B. (1997), "Effect of Sodium Chloride on Stress - Deformation of Sand Bentonite Mixture", Journal of the Korean Geotechnical Society, Vol.13, No.2, pp.17-27.
  2. Arrowsmith, E. J. (1978), "Roadwork fills - a material engineer's viewpoint", In Proceedings of the Clay Fills Conference, Institution of Civil Engineering, London, pp.25-36.
  3. Belviso, R., Ciampoil, S., Cotecchia, V., and Federico, A. (1985), "Use of the cone penetrometer to determine consistency limits", Ground Engineering, Vol.18, No.5, pp.21-22.
  4. Dennehy, J. P. (1978), "The remoulded undrainded shear strength of cohesive soils and its influence on the suitability of embankment fill", In Proceedings of the Clay Fills Conference, Institution of Civil Engineers, London, pp.87-94.
  5. Federico, A. (1983), "Relationships (Cu-w) and (Cu-s) for remolded clayey soils at high water content", Riv. Ital. Geological, Vol.14, No.1, pp.38-41.
  6. Jeong, S. W. (2011), Influence of physico-chemical characteristics of fine-grainded sediments on their rheological behavior, PhD Thesis, Laval University, Quebec, Canada
  7. Jeong, S. W. (2013), "Debris Flow Mobility: A Comparison of Weathered Soils and Clay-rich Soils", Journal of the Korean Geotechnical Society, Vol.29, No.1, pp.23-37. https://doi.org/10.7843/kgs.2013.29.1.23
  8. Karlsson, R. (1977), "Consistency limits. In A manual for the performance and interpretation of laboratory investigations, Part 6", Swedish Council for Building Research, Stockholm, pp.131-136.
  9. Kayabali, K. and Tufenkci, O. O. (2010), "Shear strength of remolded soils at consistency limits", Canadian Geotechnical Journal, Vol. 47, pp.259-266. https://doi.org/10.1139/T09-095
  10. Lee, L. T. and Freeman, R. B. (2007), "An alternative test omethod for assessing consistency limits", Geotechnical Testing Journal, Vol.30, No.4, pp.1-8.
  11. Nagaraj, H. B., Sridharan, A., and Mallikarjuna, H. M. (2012), "Re-examination of Undrained Strength at Atterberg Limits Water Contents", Geotechnical and Geological Engineering, Vol.30, pp. 727-736. https://doi.org/10.1007/s10706-011-9489-7
  12. Norman, L. E. J. (1958), "A comparison of values of liquid limit determined with apparatus having bases of different hardness" Geotechnique, Vol.8, pp.79-83. https://doi.org/10.1680/geot.1958.8.2.79
  13. Park, N. Y. (1985), "Comparative study of undrained shear strength measurements of a soft clayey soils", Myongji University, Master's thesis.
  14. Park, S. S., Nong, Z. Z., and Jeong, S. W. (2012), "Effect of Sea water and Microorganism on Liquid and plastic limits of soils", Journal of the Korean Geotechnical Society, Vol.28, No.10, pp. 79-88. https://doi.org/10.7843/kgs.2012.28.10.79
  15. Sharma, B. and Bora, P. K. (2003), "Plastic limit, liquid limit and undrainded shear strength of soil - reappraisal", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.129, No.8, pp.774-777. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(774)
  16. Skempton, A. W. and Northey, R. D. (1953), "Comparison of liquid limit values determined according to Casagrande and Vasilev", Geotechnique, Vol.3, pp.30-53.
  17. Wasti, Y. and Bezirci, M. H. (1986), "Determination of the consistency limits of soils by the fall cone test", Canadian Geotechnical Journal, Vol.23, No.2, pp.241-246 https://doi.org/10.1139/t86-033
  18. Wood, D. M. (1985), "Index properties and consolidation history", Proc., 11th Int. Conf. on Soil Mechanics and Foundation Engineering, San Francisco, pp.703-706.
  19. Wroth, C. P. and Wood, D. M. (1978), "The correlation of index properties with some basic engineering properties of soils", Canadian Geotechnical Journal, Vol.15, No.2, pp.137-145. https://doi.org/10.1139/t78-014
  20. Yeliz, Y. A., Abidin, K., and Ali, H. O. (2008), "Seawater effect on consistency limits and compressibility characteristics of clays", Engineering Geology, Vol.102, pp.54-61. https://doi.org/10.1016/j.enggeo.2008.07.005
  21. Youssef, M. S., E. L. Ramli, A. H., and E. I. Demery, M. (1965), "Relationship between shear strength, consolidation, liquid limit and plastic limit for remolded clays" Proc., 6th Int. Conf. on Soil Mechanics, Montreal, pp.126-129.

Cited by

  1. 모래 함유량이 점토의 액소성한계 및 전단강도에 미치는 영향 vol.30, pp.2, 2013, https://doi.org/10.7843/kgs.2014.30.2.65
  2. 소형콘의 관입저항력을 이용한 점토의 액성한계측정에 관한 연구 vol.32, pp.10, 2013, https://doi.org/10.7843/kgs.2016.32.10.5
  3. Numerical simulation of water content dependent undrained shear strength of clays vol.38, pp.5, 2020, https://doi.org/10.1080/1064119x.2019.1608604
  4. Effect of Wetting Conditions on the In Situ Density of Soil Using the Sand-Cone Method vol.11, pp.2, 2013, https://doi.org/10.3390/app11020718