References
- D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Sep. 2006. https://doi.org/10.1109/TIT.2006.871582
- E. Candes and M. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21-30, Mar. 2008. https://doi.org/10.1109/MSP.2007.914731
- J. A. Tropp, "Just relax: convex programming methods for identifying sparse signals in noise," IEEE Trans. Inf. Theory, vol. 52, no. 3. pp. 1030-1051, Mar. 2006.
- D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, "Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit," IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1094-1121, Feb. 2012. https://doi.org/10.1109/TIT.2011.2173241
- F. R. Kschischang, B. J. Frey, and H. A. Loeliger, "Factor graphs and the sum-product algorithm," IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498-519, Feb. 2001. https://doi.org/10.1109/18.910572
- H. H. Baek, S. J. Park, J. M. Ryu, and H. N. Lee, "Reanalysis of Approximate Message Passing (AMP) for compressed sensing signal recovery," in Proc. KICS Int. Conf. Commun. 2013 (KICS ICC 2013), pp. 701-702, Jeju Island, Korea, June 2013.
- J. Kang, H.-N. Lee, and K. Kim, "Bayesian hypothesis test using nonparametrix belief propagation for noisy sparse recovery," IEEE Trans. Signal Process., Submitted.
- M. Akcakaya, J. Park, and V. Tarokh, "A coding theory approach to noisy compressive sensing using low density frame," IEEE Trans. Signal Process., vol. 59, no. 12, pp. 5369-5379, Nov. 2011. https://doi.org/10.1109/TSP.2011.2163402
- R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Royal Statistical Soc.: Series B, vol. 58, no. 1, pp. 267-288, 1996.
- J. A. Tropp and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655-4666, Dec. 2007. https://doi.org/10.1109/TIT.2007.909108
- D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing: I. motivation and construction," in Proc. IEEE Inform. Theory Workshop(ITW 2010), pp. 1-5, Cairo, Egypt, Jan. 2010.
- M. Bayati and A. Montanari, "The dynamics of message passing on dense graphs, with applications to compressed sensing," IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 764-785, Feb. 2011. https://doi.org/10.1109/TIT.2010.2094817
- D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing," Proc. National Academy Sci., vol. 106, no. 45, pp. 18914-18915, Sep. 2009. https://doi.org/10.1073/pnas.0909892106
- A. Maleki and D. L. Donoho, "Optimally tuned iterative reconstruction algorithms for compressed sensing," IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp. 330-341, Apr. 2010. https://doi.org/10.1109/JSTSP.2009.2039176
- D. L. Donoho, A. Maleki, and A. Montanari, "The noise-sensitivity phase transition in compressed sensing," IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6920-6941, Oct. 2011. https://doi.org/10.1109/TIT.2011.2165823
- A. Maleki and D. L. Donoho, "Optimally tuned iterative Reconstruction Algorithms for compressed sensing," IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp. 330-341, Apr. 2010. https://doi.org/10.1109/JSTSP.2009.2039176