DOI QR코드

DOI QR Code

부분대역 잡음 재밍 환경에서의 주파수 재할당을 고려한 Link-16 성능 분석

Performance Analysis of Link-16 Waveform considering Frequency Remapping under PBNJ

  • 이규만 (아주대학교 컴퓨터공학과 국방전술네트워크 연구센터) ;
  • 노홍준 (아주대학교 국방전술네트워크 연구센터) ;
  • 이종관 (아주대학교 국방전술네트워크 연구센터) ;
  • 임재성 (아주대학교 소프트웨어융합학과 국방전술네트워크 연구센터)
  • 투고 : 2013.08.26
  • 심사 : 2013.11.04
  • 발행 : 2013.11.30

초록

합동전술정보분배체계는 미국, 북대서양조약기구 및 기타 연합군에서 운용하고 있는 Link-16의 통신 터미널로 사용된다. 최근 민간 항공분야에서의 교통량 증가로 인해 주파수 수요가 급증함에 따라 Link-16에서 사용 중인 주파수는 다른 시스템에 재할당될 예정이며, 이는 Link-16의 성능에 영향을 미칠 것으로 예상된다. 따라서 본 논문에서는 주파수 대역 감소에 따른 Link-16 성능의 영향을 모의실험과 수치 해석을 통해 기존 성능과 비교하였다. 성능 분석 결과, Nakagami 페이딩과 부분대역 잡음 재밍 환경에서 주파수가 재할당된 Link-16은 성능이 감소됨에도 불구하고 높은 항재밍 능력을 유지하였으며, 동일 시간슬롯에서 다수 사용자들을 지원할 수 있음을 확인하였다.

The joint tactical information distribution system (JTIDS) is used as the communication terminal of Link-16 by the United States armed forces, north atlantic treaty organization (NATO), and other allied forces. A portion of Link-16 frequencies may be shortly remapped to other systems owing to the growing demand for frequencies, especially in civil aviation, which is witnessing a constant increase in air traffic. This will affect the performance of Link-16. Therefore, in this paper, we analyze the effect of frequency band reduction on the performance of Link-16 waveform under partial-band noise jamming with Nakagami fading, via simulation and numerical analysis. The multi-net and anti-jamming performance of Link-16 with frequency remapping is compared with that of conventional Link-16 systems. The results show that the performance of Link-16 waveform is degraded with the reduction in frequencies. Nonetheless, Link-16 retains its jam resistance, and it can support multiple users in the same time slots.

키워드

참고문헌

  1. C. Wilson, Network centric operations: Background and Oversight Issues for Congress, CRS Report for Congress, Mar. 2007.
  2. H. Wang, J. Kuang, Z. Wang, and H. Xu, "Transmission performance evaluation of JTIDS," in Proc. IEEE Military Commun. Conf. (MILCOM), vol. 4, pp. 2264-2268, Atlantic City, U.S.A., Oct. 2005.
  3. D. Lekkakos and C. Robertson, "Performance analysis of a LINK-16/JTIDS compatible waveform transmitted over a channel with pulse-noise interference," in Proc. IEEE Pacific Rim Conf., pp. 29-34, Victoria, Canada, Aug. 2009.
  4. C.-H. Kao, F. Kragh, and C. Robertson, "Performance analysis of a JTIDS/Link-16-type waveform transmitted over Nakagami fading channels with pulsed-noise interference," in Proc. IEEE Military Commun. Conf. (MILCOM), pp. 1-6, San Diego, U.S.A., Nov. 2008.
  5. LS telcom, Aeronautical spectrum and frequency management solutions, retrieved from http://www.lstelcom.com/fileadmin/content/marketing/brochures/aeronautical_brochure_highres.pdf
  6. L. Berleman and S. Mangold, Cognitive Radio and Dynamic Spectrum Access, John wiley & Sons Ltd, July 2009.
  7. DTIC, LINK 16 Electromagnetic Compatibility (EMC) Features Certification Process and Requirements (DoD 4650.1-R1), retrieved Apr., 26, 2005, from http://www.dtic.mil/whs/directives/corres/pdf/465001r1p.pdf.
  8. H. J. Noh, J. B. Kim, J. S. Lim, J. H. Nam, and D. W. Jang, "Anti-jamming performance analysis of Link-16 waveform," J. Korean Inst. Commun. Inform. Sci. (KICS), vol. 35, no. 12, pp. 1105-1112, Dec. 2010.
  9. Understanding Link-16: A Guidebook for New User, Northrop Grumman Corporation, Sep. 2001.
  10. R. A. Poisel, Modern Communications Jamming Principles and Techniques, Artech House, Dec. 2004.
  11. R. Sabatini, L. Aulanier, G. L. marinoni, M. Martinez, B. Pour, and H. Rutz, Multifunctional Information Distribution System (MIDS) Low Volume Terminal (LVT) development and integration programs towards LINK-16 network centric allied/coalition operations, retrieved Oct. 2011, from http://ftp.rta.nato.int/public/PubFullText/RTO/MP/RTO-MP-IST-083/MP-IST-083-11.doc.
  12. R. Ghanadan, P. Tufano, J. Hsu, J. Gu, and C. Connelly, "Flexible access secure transfer (FAST) tactical communications waveform for airborne networking," in Proc. IEEE Military Commun. Conf. (MILCOM), vol. 2, pp. 1167-1173, Atlantic City, U.S.A., Oct. 2005.
  13. S. Pasupathy, "Minimum shift keying: a spectrally efficient modulation," IEEE Commun. Mag., vol. 17, no. 4, pp. 14-22, July 1979.
  14. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principle of Statistical Radio physics I, Springer-Verlag, July 1987.
  15. C.-H. Kao, C. Robertson, and K. Lin, "Performance analysis and simulation of cyclic code-shift keying," in Proc. IEEE Military Commun. Conf. (MILCOM), pp. 1-6, San Diego, U.S.A., Nov. 2008.
  16. J. G. Proakis, Digital Communications, 4th ed., McGraw Hill, Aug. 2000.
  17. H. J. Noh and J. S. Lim, "Partitioned cyclic code shift keying for JTIDS," in Proc. IEEE Military Commun. Conf. (MILCOM), pp. 1-6, Orlando, U.S.A., Oct.-Nov. 2012.