DOI QR코드

DOI QR Code

IEEE 802.11p MAC 기반 차량 네트워크에서의 분산된 브로드캐스팅 모델링

Modeling of the Distributed Broadcasting in IEEE 802.11p MAC Based Vehicular Networks

  • 정대인 (한국외국어대학교 공과대학 디지털정보공학과)
  • 투고 : 2013.09.03
  • 심사 : 2013.10.25
  • 발행 : 2013.11.30

초록

본 논문은 차량 네트워크에 적용되는 IEEE 802.11p MAC 프로토콜에서의 브로드캐스팅 동작을 모델링하였다. 도로상의 안전 서비스 구현에 필요한 beacon 메시지는 브로드캐스팅 방식으로 교환되는데 최적의 안전 서비스 구축을 위해 브로드캐스팅 동작의 해석적 모델링이 필요하다. 모델링에 반영된 IEEE 802.11p 고유의 특성은, CCH(Control Channel)와 SCH(Service Channel) 간의 채널 스위칭 동작과 이로 인해 beacon 메시지를 교환하는 CCH 구간이 시간적 제한을 갖는다는 점, 그리고 재전송이 없다는 점이다. 이러한 고유 특성이 반영된 모델링 설계에서 본 논문은 beacon 메시지의 발생 패턴에 대한 제한을 두지 않았다. 즉, CCH 구간 내 분산된 발생 및 브로드캐스팅을 모델링하였다. 시뮬레이션 결과와의 비교를 통해 본 논문에서 제안한 모델링의 정확성을 확인하였다. 또한, beacon 메시지 발생 및 브로드캐스팅을 분산시킴으로써 전달률, 전송 지연 및 지연의 변동성 등 모든 성능지표가 개선되는 것을 확인하였다.

In this paper, we propose a modeling of the broadcasting in the IEEE 802.11p MAC protocol for the VANET(Vehicular Ad hoc Networks). Due to the fact that the beacon message which is needed for the safety services is shared via broadcasting, the analytical modeling of the broadcasting is crucial for the optimum design of the services. Two characteristics specific to the IEEE 802.11p are reflected in the modeling; the time limited CCH interval caused by the channel switching between the CCH and SCH, and no retransmission of the broadcasted messages. In the proposal, we assumed no restriction on the moment of generation of the beacon messages. We allow the messages to be generated and broadcasted within the whole CCH interval. Simulation results prove the accuracy of the proposed modeling. Noticeable improvements are also observed in terms of the performance indices such as the successful delivery ratio, transmission delay, and the variation of the delay.

키워드

참고문헌

  1. IEEE, Amendment 6: Wireless Access in Vehicular Environments, IEEE 802.11p-2010, July 2010.
  2. IEEE, IEEE Standard for Wireless Access in Vehicular Environments (WAVE- Multichannel Operation, IEEE Std. 1609.4, Feb. 2011.
  3. X. Ma and X. Chen, "Delay and broadcast reception rates of highway safety applications in vehicular ad hoc networks," in Proc. Mobile Networking Veh. Environment, pp. 85-90, Anchorage, U.S.A., May 2007.
  4. C. Campolo, A. Vinel, A. Molinaro, and Y. Koucheryavy, "Modeling broadcasting in IEEE 802.11p/WAVE vehicular networks," IEEE Commun. Lett., vol. 15, no. 2, pp. 199-201, Feb. 2011. https://doi.org/10.1109/LCOMM.2011.122810.102007
  5. C. Campolo, A. Molinaro, and A. Vinel, "Understanding the performance of short-lived control broadcast packets in 802.11p/WAVE vehicular networks," in Proc. IEEE Veh. Networking Conf. (VNC), pp. 102-108, Amsterdam, Netherlands, Nov. 2011.
  6. A. Vinel, V. Vishinevsky, and Y. Koucheryavy, "A Simple analytical model for the periodic broadcasting in vehicular ad-hoc networks," in Proc. IEEE GLOBECOM Workshops, pp. 1-5, New Orleans, U.S.A., Nov. 2008.
  7. A. Vinel, Y. Koucheryavy, S. Andreev, and D. Staehle, "Estimation of a successful beacon reception probability in vehicular ad-hoc networks," in Proc. Int. Conf. Wireless Commun. Mobile Comput. (IWCMC), pp. 416-420, Leipzig, Germany, June 2009.
  8. C. Campolo, A. Molinaro, A. vinel, and Y. Zhang, "Modeling prioritized broadcasting in multichannel vehicular networks," IEEE Trans. Veh. Technol., vol. 61, no. 2, pp. 687-701, Feb. 2012. https://doi.org/10.1109/TVT.2011.2181440
  9. R. Reinders, M. Eenennaam, G. Karagiannis, and G. Heijenk, "Contention window analysis for beaconing in VANETs," in Proc. Int. Conf. Wireless Commun. Mobile Comput. (IWCMC), pp. 1481-1487, Istanbul, Turkey, July 2011.
  10. M. Eenennaam, W. Wolterink, G. Karagiannis, and G. Heijenk, "Exploring the solution space of beaconing in VANETs," in Proc. IEEE Veh. Networking Conf. (VNC), pp. 1-8, Tokyo, Japan, Oct. 2009.
  11. H. Yoo, D. Shin, and D. Kim, "Repetition-based broadcasting protocol for reliable beaconing in VANETs," in Proc. KICS Summer Symp., pp. 326-327, Jeju Island, Korea, June 2009.
  12. M. Hassan, H. L. Vu, and T. Sakurai, "Performance analysis of the IEEE 802.11 MAC protocol for DSRC safety applications," IEEE Trans. Veh. Technol., vol. 60, no. 8, pp. 3882-3896, Oct. 2011. https://doi.org/10.1109/TVT.2011.2162755