DOI QR코드

DOI QR Code

Contrast Enhancement Algorithm Using Singular Value Decomposition and Image Pyramid

특이값 분해와 영상 피라미드를 이용한 대비 향상 알고리듬

  • 하창우 (한양대학교 전자통신컴퓨터공학과 영상통신 및 신호처리 연구실) ;
  • 최창렬 (한양대학교 융합IT기반 미래가치 창조 인재양성 사업단) ;
  • 정제창 (한양대학교 전자통신컴퓨터공학과 영상통신 및 신호처리 연구실)
  • Received : 2013.09.02
  • Accepted : 2013.10.16
  • Published : 2013.11.30

Abstract

This paper presents a novel contrast enhancement method based on singular value decomposition and image pyramid. The proposed method consists mainly of four steps. The proposed algorithm firstly decomposes image into band-pass images, including basis image and detail images, to improve both the global contrast and the local detail. In the global contrast process, singular value decomposition is used for contrast enhancement; the local detail scheme uses weighting factors. In the final image composition process, the proposed algorithm combines color and luminance components in order to preserve the color consistency. Experimental results show that the proposed algorithm improves contrast performance and enhances detail compared to conventional methods.

본 논문은 특이값 분해와 영상 피라미드를 이용한 새로운 대비 개선 방법을 제안한다. 제안된 방법은 다음과 같이 네 단계로 진행 된다. 먼저 전역 명암대비와 지역적 디테일을 향상시키기 위해 영상 피라미드를 이용하여 영상을 기저영상과 세부영상들로 분해한다. 전역 명암대비 향상은 특이값 분해를 이용하여 영상 전체의 명암대비를 향상시키고, 지역적 디테일 향상은 가중치를 이용하여 개선시킨다. 영상 합성은 영상의 컬러 일관성을 유지하기 위해 컬러와 명암성분들을 결합한다. 실험 결과를 통해 제안된 방법은 기존의 방법들보다 영상의 세부 정보를 강화하면서 전체적인 명암대비 개선을 보인다.

Keywords

References

  1. S. W. Lee, C. Y. Song, S. S. Cho, S. I. Kim, W. S. Lee, and J. G. Kang, "Contrast enhancement based on weight mapping retinex algorithm," J. Inst. Electron. Eng. Korea (IEEK), vol, 46, no. 4, pp. 31-41, Dec. 2009.
  2. H. J. Kwon, S. H. Lee S. M. Chae, and K. I. Sohng, "Multi scale tone mapping model using visual brightness functions for HDR image compression," J. Korea Inform. Commun. Soc. (KICS), vol. 37A, no. 12, pp. 1054-1064. Dec. 2012. https://doi.org/10.7840/kics.2012.37A.12.1054
  3. R. C. Gonzalez and R. E. Wood, Digital Image Processing, 3rd Ed., Prentice Hall, 2008.
  4. Y. T. Kim, "Contrast enhancement using brightness preserving bi-histogram equalization," IEEE Trans. Consum. Electron., vol. 43, no. 1, pp. 1-8, Feb. 1997. https://doi.org/10.1109/30.580378
  5. Y. Wan, Q. Chen, and B. M. Zhang, "Image enhancement based on equal area dualistic sub-image histogram equalization method," IEEE Trans. Consum. Electron., vol. 45, no. 1, pp. 68-75, Feb. 1999. https://doi.org/10.1109/30.754419
  6. S. Chen and A. Ramli, "Minimum mean brightness error bi-histogram equalization in contrast enhancement," IEEE Trans. Consum. Electron., vol. 49, no. 4, pp. 1310-1319, Nov. 2003. https://doi.org/10.1109/TCE.2003.1261234
  7. W. K. Kim, J. M. You, and J. C. Jeong, "Contrast enhancement using histogram equalization based on logarithmic mapping," Optical Eng., vol. 51, no. 6, pp. 067002, June 2012. https://doi.org/10.1117/1.OE.51.6.067002
  8. S.-C. Huang, F.-C. Cheng, and Y.-S. Chiu, "Efficient Contrast Enhancement Using Adaptive Gamma Correction With Weighting Distribution," IEEE Trans. Image Process., vol. 22, no. 3, pp. 1032-1041, Mar. 2013. https://doi.org/10.1109/TIP.2012.2226047
  9. H. Demirel, G. Anbarjafari, and M. N. S. Jahromi, "Image equalization based on singular value decomposition," in Proc. 23rd Int. Symp. Comput. Inform. Sci. (ISCIS'08), pp. 1-5, Istanbul, Turkey, Oct. 2008.
  10. H. Demirel, C. Ozcinar, and G. Anbarjafari, "Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 2, pp. 333-337, Apr. 2010. https://doi.org/10.1109/LGRS.2009.2034873
  11. Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, "Edge-preserving decompositions for multi-scale tone and detail manipulation," ACM Trans. Graphics, vol. 27, no. 3, pp. 67, Aug. 2008.
  12. S. H. Yun, J. H. Kim, and S. K. Kim, "Image enhancement using a fusion framework of histogram equalization and Laplacian pyramid," IEEE Trans. Consum. Electron., vol. 56, no. 4, pp. 2763-2771, Nov. 2010. https://doi.org/10.1109/TCE.2010.5681167
  13. K. Konstantinides and K. Yao, "Statistical analysis of effective singular values in matrix rand determination," IEEE Trans. Acoust., Speech, Signal Process., vol. 36, no. 5, pp. 757-763, May 1988. https://doi.org/10.1109/29.1585
  14. D. Kalman, "A Singularly valuable decomposition: The SVD of a matrix," College Math. J., vol. 27, no. 1, pp. 2-23, Jan. 1996. https://doi.org/10.2307/2687269
  15. Z. Hou, "Adaptive singular value decomposition in wavelet domain for image denoising," Pattern Recognition, vol. 36, no. 8, pp. 1747-1763, Aug. 2003. https://doi.org/10.1016/S0031-3203(02)00323-0
  16. H. Nasira, V. Stankovica, and S. Marshallb, "Singular value decomposition based fusion for super-resolution image reconstruction," Signal Process.: Image Commun., vol. 27, no. 2, pp. 180-191, Feb. 2012. https://doi.org/10.1016/j.image.2011.12.002
  17. D. Menotti, L. Najman, J. Facon, and A. A. Araujo, "Multi-histogram equalization methods for contrast enhancement and brightness preserving," IEEE Trans. Consum. Electron., vol. 53, no. 3, pp. 1186-1194, Aug. 2007. https://doi.org/10.1109/TCE.2007.4341603
  18. C. W. Ha, W. J. Lee, S. J. Jin, and J. C. Jeong, "Human perception of asymmetrical three-dimensional image," J. Broadcast Eng. (BE), vol. 12, no. 1, pp. 41-52, Jan. 2007. https://doi.org/10.5909/JBE.2007.12.1.41
  19. ITU, Methodology for subjective assessment of the quality of television picture, Rec. ITU-R BT.500-11, June 2002.