DOI QR코드

DOI QR Code

Finite element dynamic analysis of laminated composite shell structures considering geometric nonlinear effects

기하학적 비선형 효과를 고려한 복합재료 적층 쉘 구조의 유한요소 동적 해석

  • Lee, Sang-Youl (Department of Civil Engineering, Andong National University)
  • 이상열 (안동대학교 토목공학과)
  • Received : 2013.08.05
  • Accepted : 2013.11.07
  • Published : 2013.11.30

Abstract

This study carried out a geometrical nonlinear dynamic analysis of laminated composite shell structures. Based on the first-order shear deformation shell theory and nonlinear formulation of Sanders, the Newmark method and Newton-Raphson iteration are used for dynamic solution considering nonlinear effects. The effects of radius, fiber angles, and layup sequences on the nonlinear dynamic response for various parameters are studied using a nonlinear dynamic finite element program developed for this study. The several numerical results were in good agreement with those reported by other investigators for square composite plates, and the new results reported in this paper show the significant interactions between the radius, fiber angles and layup sequence in the laminate. Key observation points are discussed and a brief design guideline of laminated composite shells is given.

본 연구에서는 복합재료 적층 쉘 구조의 기하학적 비선형 동적 거동을 상세 분석하였다. Sanders의 1차 전단 변형 쉘이론 및 비선형 방정식을 기반하여, 비선형 동적 방정식의 해는 Newmark 방법과 Newton-Raphson 반복법을 혼용하여 적용하여 산정하였다. 본 연구에서 개발한 유한요소 해석프로그램을 사용하여 쉘의 곡률, 화이버 보강각도 및 적층 배열의 변화가 적층 쉘의 기하학적 비선형 동적 거동에 미치는 영향을 상세 분석하였다. 몇 가지 수치해석 결과는 기존 문헌으로부터 얻어진 결과와 잘 일치하는 것으로 나타났다. 본 연구의 새로운 결과는 최대 동적변위에 대한 적층 쉘 구조의 곡률, 화이버 보강각도 그리고 적층 배열 형식과의 중요한 상호관계를 보여준다. 몇 가지 수치해석 예제는 동적 특성을 고려한 적층 쉘 구조를 상세 설계하는데 필요한 가이드라인을 제시할 수 있을 것으로 기대된다.

Keywords

References

  1. S. Y. Lee, and S. Y. Chang, "Dynamic Instability of Delaminated Composite Structures with Various Geometrical Shapes," Journal of the Korean Society for Advanced Composite Structures, Vol. 1, No. 1, pp.1-8, 2010.
  2. H. S. Ji, and S. Y. Lee, "Nonlinear dynamic behaviors of laminated composite structures containing central cutouts," Journal of Korean Society of Steel Construction, Vol. 23, No. 5, pp.607-614, 2011.
  3. J. S. Chang, and Y. P. Huang, "Geometrically nonlinear static and transiently dynamic behavior of laminated composite plates based on a higher order displacement field", Composite Structures, Vol.18, pp.327-364, 1991. DOI: http://dx.doi.org/10.1016/0263-8223(91)90003-H
  4. J. Chen, D. J. Dawe, and S. Wang, "Nonlinear transient analysis of rectangular composite laminated plates", Composite Structures, Vol.49, pp.129-139, 2000. DOI: http://dx.doi.org/10.1016/S0263-8223(99)00108-7
  5. A. J. M. Ferreira, C. M. C. Roque, and R. M. N. Jorge, "Static and free vibration analysis of composite shells by radial basis functions", Engineering Analysis with Boundary Elements, Vol.30, pp.719-733, 2006. DOI: http://dx.doi.org/10.1016/j.enganabound.2006.05.002
  6. M. R. Khalil, M. D. Olson, and D. L. Anderson, "Non-linear dynamic analysis of stiffened plates" , Computers and Structures, Vol.29, pp.929-941, 1998,.
  7. S. S .E, Lam, D. J. Dawe, and Z. G. Azizian "Non-linear analysis of rectangular laminates under end shortening, using shear deformation plate theory", International Journal of Numerical Method in Engineering, Vol.36, pp.1045-1064, 1993. DOI: http://dx.doi.org/10.1002/nme.1620360611
  8. T. Park, and S. Y. Lee, "Parametric instability of delaminated composite spherical shells subjected to in-plane pulsating forces", Composite Structures, Vol.91, pp.196-204, 2009. DOI: http://dx.doi.org/10.1016/j.compstruct.2009.05.001
  9. J. N. Reddy, and C. F. Liu, "A higher-order shear deformation theory for laminated elastic shells", International Journal of Engineering Science, Vol.23, pp.319-330, 1985. DOI: http://dx.doi.org/10.1016/0020-7225(85)90051-5
  10. J. N. Reddy, "An Introduction to nonlinear finite element Analysis", Oxford University Press, 2006.
  11. J. L. Sanders, "Nonlinear theories for thin shells", Quarterly of Applied Mathematics, Vol.21, No.1, pp.21-36, 1963. https://doi.org/10.1090/qam/147023