DOI QR코드

DOI QR Code

농업재해 예측을 위한 신 기후변화 시나리오의 농업기상자료 구축 - 111개 농업주요지점을 대상으로 -

Construction of Agricultural Meteorological Data by the New Climate Change Scenario for Forecasting Agricultural Disaster - For 111 Agriculture Major Station -

  • 주진환 (공주대학교 대학원 농공학과) ;
  • 정남수 (공주대학교 지역건설공학과) ;
  • 서명철 (농촌진흥청 국립식량과학원 작물환경과 기후변화대응연구실)
  • 투고 : 2013.07.12
  • 심사 : 2013.10.18
  • 발행 : 2013.11.30

초록

For analysis of climate change effects on agriculture, precise agricultural meteorological data are needed to target period and site. In this study, agricultural meteorological data under new climate change scenario (RCP 8.5) are constructed from 2011 to 2099 in 111 agriculture major station suggested by Rural Development Administration (RDA). For verifying constructed data, comparison with field survey data in Suwon shows same trend in maximum temperature, minimum temperature, average temperature, and precipitation in 2011. Also comparison with normals of daily data in 2025, 2055, and 2085 shows reliability of constructed data. In analysis of constructed data, we can calculate sum of days over temperature and under temperature. Results effectively show the change of average temperature in each region and odd days of precipitation which means flood and dry days in target region.

키워드

참고문헌

  1. Ahn, J. S., Y. W. Lee, and K. H. Park, 2006. An ESDA tool for time-series spatial association. The Journal of GIS Association of Korea 4(1): 163-176 (in Korean).
  2. Chung, U. R., H. C. Seo, and J. I. Yun, 2003. Air temperature variation affected by site elevation in Hilly orchards. Korean Journal of Agricultural and Forest Meteorology 5(1): 43-47 (in Korean).
  3. Chung, U. R., K. S. Cho, and B. W. Lee, 2006. Evaluation of site-specific potential for rice production in Korea under the changing climate. Korean Journal of Agricultural and Forest Meteorology 8(4): 229-241 (in Korean).
  4. Hong, E. M., J. Y. Choi, S. H. Lee, S. H. Yoo, and M. S. Kang, 2009. Estimation of paddy rice evapotranspiration considering climate change using LARS-WG. Journal of the Korean Society of Agricultural Engineers 51(3): 25-35 (in Korean). https://doi.org/10.5389/KSAE.2009.51.3.025
  5. Sikder, I. U., 2009. Knowledge-based spatial decision support systems: An assessment of environmental adaptability of crops. Expert Systems with Applications 36: 5341-5347. https://doi.org/10.1016/j.eswa.2008.06.128
  6. Jang, D. H., and W. T. Kwon, 2007. Analyses of the changes in the optimum ripening periods of the rice plant according to the temperature changes in the Jeonnam's East-coast region. Journal of Climate Research 2(1): 3-13 (in Korean).
  7. Jeong, H. S., C. H. Seong, T. I. Jang, K. W. Jung, M. S. Kang, and S. W. Park, 2011. Effects of reclaimed wastewater irrigation of paddy rice yields and fertilizer reduction using the DSSAT model. Journal of the Korean Society of Agricultural Engineers 53(4): 67-74 (in Korean). https://doi.org/10.5389/KSAE.2011.53.4.067
  8. Jung, N. S., D. H. Jang, and S. H. Lee, 2009. Research on an upland indicator plant for vulnerability assessment of climate change. The Association of Korean Photo- Geographers 19(4): 81-93 (in Korean).
  9. Kim, J. Y., S. W. Han, H. D. Kim, and Y. H. Kim, 2002. Using spatial data and crop growth modeling to predict performance of South korean rice varieties grown in western coastal plains in North korea II. Genetic coefficients of South korean cultivars for CERES-Rice. Korean Journal of Agricultural and Forest Meteorology 4(4): 224-236 (in Korean).
  10. Kim, S. J., T. Y. Park, S. M. Kim, and S. M. Kim, 2012. The proxy variables selection of vulnerability assessment for agricultural infrastructure according to climate change. Journal of the Korean Commitee of Irrigation and Drainage 18(2): 33-42 (in Korean).
  11. Korea Meteorological Administration, 2012. Case studies to understand and take advantage of climate change scenarios (in Korean).
  12. Lee, C. K., K. S. Kwak, J. H. Kim, J. Y. Son, and W. H. Yang, 2011. Impacts of climate change and follow-up cropping season shift on growing period and temperature in different rice maturity types. Korean J. Crop sci 56(3): 233-243 (in Korean). https://doi.org/10.7740/kjcs.2011.56.3.233
  13. Neeraj Kumar, p. T, and R. K. Pal, 2010. Simulation modeling of growth parameters for rice genotypes at different nitrogen level and different dates of transplanting using CERES 3.5v for Eastern uttar pradesh. Indian J. Agric. Res. 44(1): 20-25.
  14. Park, H. K., W. Y. Choi, K. Y. Kim, B. I. Ku, Y. D. Kim, C. K. Kim, and J. K. Ko, 2008. Forecasting optimum heading date and yield of rice depending on weather condition. The Korean Society of International Agriculture 20(4): 320-330 (in Korean).
  15. Grabski, S. V., and D. Mendez, 1998. Implementation of a knowledge-based agricultural geographic decisionsupport system in the Dominican republic: a case study. Information Technology & People 11(3): 174-193. https://doi.org/10.1108/09593849810227986
  16. Seo, H. C., S. K. Kim, Y. S. Lee, and Y. C. Cho, 2006. Geographical shift of quality soybean production area in northern Gyeonggi province by year 2100. Korean Journal of Agricultural and Forest Meteorology 8(4): 242-249 (in Korean).
  17. Shim, K. M., J. T. Lee, Y. S. Lee, and G. Y. Kim, 2003. Traits of Agro-meteorological disasters in 20th century Korea. Korean Journal of Agricultural and Forest Meteorology 5(4): 255-260 (in Korean).
  18. Shim, K. M., G. Y. Kim, K. A. Roh, G. C. Jeong, and D. B. Lee, 2008. Evaluation of Agro-climatic indices under climate change. Korean Journal of Agricultural and Forest Meteorology 10(4): 113-120 (in Korean). https://doi.org/10.5532/KJAFM.2008.10.4.113
  19. Shim, K. M., S. H. Min, D. B. Lee, G. Y. Kim, H. C. Jeong, S. B. Lee, and K. K. Kang, 2011. Simulation of the effects of the A1B climate change scenario on the potential yield of winter naked barley in Korea. Korean Journal of Agricultural and Forest Meteorology 13(4): 192-203 (in Korean). https://doi.org/10.5532/KJAFM.2011.13.4.192
  20. Yoo, G. Y., J. E. Kim, 2007. Development of a methodology assessing rice production vulnerabilities to climate change. Korea Environment Institute : 1-84 (in Korean).
  21. Yoon, J. S., N. S. Jung, and D. H. Jang, 2007. An analysis of determinants of apple farm income in Yesan-Gun for climate change. Journal of Agriculture & Life Science 41(4): 73-78 and Drainage 18(2): 33-42 (in Korean).
  22. Yun, J. I., J. Y. Choi, Y. K. Yoon, and U. R. Chung, 2000. A spatial interpolation model for daily minimum temperature over mountainous regions. Korean Journal of Agricultural and Forest Meteorology 2(4): 175-182 (in Korean).
  23. Yun, J. I., 2004. Visualization of local climates based in geospatial climatology. Korean Journal of Agricultural and Forest Meteorology 6(4): 272-289 (in Korean).
  24. Yun, J. I., 2006. Climate change impact on the flowering season of japanese cherry (Prunus serrulata var. spontanea) in Korea during 1941-2100. Korean Journal of Agricultural and Forest Meteorology 8(2): 68-76 (in Korean).

피인용 문헌

  1. Development of RESTful Web Service for Loading Data focusing on Daily Meteorological Data vol.56, pp.6, 2014, https://doi.org/10.5389/KSAE.2014.56.6.093