DOI QR코드

DOI QR Code

Terra MODIS 위성영상과의 비교를 통한 COMS GOCI 위성영상의 식생지수 적용성 평가

Applicability of Vegetation Indices from Terra MODIS and COMS GOCI Imageries

  • 박진기 (충북대학교 지역건설공학과) ;
  • 김봉섭 (충북대학교 지역건설공학과) ;
  • 오시영 (충북대학교 지역건설공학과) ;
  • 박종화 (충북대학교 지역건설공학과)
  • 투고 : 2013.07.04
  • 심사 : 2013.10.07
  • 발행 : 2013.11.30

초록

The objective of this study is to evaluate the applicability of Communication, Ocean, and Meteorological Satellite (COMS) Geostationary Ocean Color Imager (GOCI) vegetation indices on a quantitative analysis. For evaluation, the vegetation indices such as RVI, NDVI and SAVI were extracted by using COMS GOCI and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) imageries. The 4,000 points using simple random sampling (SRS) method were randomly extracted from land areas except ocean to compare the vegetation indices from two images. The results of linear regression showed that the regression coefficients of RVI, NDVI, and SAVI between COMS GOCI and Terra MODIS were 0.66~0.82, 0.71~0.83, and 0.71~0.83, respectively. Especially, the regression coefficients of RVI (r=0.85), NDVI (r=0.91) and SAVI (r=0.91) were strongly related from September 2011 to January 2012. Thus, COMS GOCI can be substituted for particular periods and it needs to verify additionally.

키워드

참고문헌

  1. Gitelson, A. A., and Y. J. Kaufman, 1998. MODIS NDVI optimization to fit the AVHRR data series spectral consi-derations. Remote Sensing of Environment 66: 343-350. https://doi.org/10.1016/S0034-4257(98)00065-0
  2. Goetz, S. J., 1997. Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of Remote Sensing 18: 71-94. https://doi.org/10.1080/014311697219286
  3. Guyot, G., and X. F. Gu, 1994. Effect of radiometric corrections on NDVI determined from SPOT HRV and Landsat TM data. Remote Sensing of Environment 49: 169-180. https://doi.org/10.1016/0034-4257(94)90012-4
  4. Hird, J. N., and G. J. McDermid, 2009. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sensing of Environment 113: 248-258. https://doi.org/10.1016/j.rse.2008.09.003
  5. Huete, A. R., 1988. A Soil Adjusted Vegetation Index (SAVI). Remote Sensing of Environment 25(3): 295–309. https://doi.org/10.1016/0034-4257(88)90106-X
  6. Im, J. H., H. S. Sagong, and Y. D. Kwon, 2001, Analyses on Standard Formats of Spatial Imagery Information. The Journal of GIS Association of Korea 9(1): 31-50 (in Korean).
  7. Jin C. G., S. Y. Park, H. S. Kim, Y. S. Chun, and C. U. Choi, 2010, Comparison of High Resolution Image by Ortho Rectification Accuracy and Correlation Each Band. The Korean Society for Geo Spatial Information System 18(2): 35-45 (in Korean).
  8. Kim, Y. M., Y. G. Byun, W. S. Song, and K. Y. Yu, 2007. A Study on Possibility of Red Tide Detection Using MODIS Data. Korea Society of Surveying, Geodesy, Photogrammetry, and Cartography : 131-134 (in Korean).
  9. Lee, J. W., G. A. Park, H. K. Joh, K. H. Lee, S. I. Na, J. H. Park, and S. J. Kim, 2011, Analysis of Relationship between Vegetation Indices and Crop Yield using KOMPSAT (KOreaMulti-Purpose SATellite)-2 Imagery and Field Investigation Data. Journal of the Korean Sociery of Agricultural Engineers 53(3): 75-82 (in Korean). https://doi.org/10.5389/KSAE.2011.53.3.075
  10. Lee, M. S., S. J. Kim, H. S. Shin, J. K. Park, and J. H. Park, 2009. Extraction of Agricultural Land Use and Crop Growth Information using KOMPSAT-3 Resolution Satellite Image. Korean Journal of Remote Sensing 25(5): 411-421 (in Korean). https://doi.org/10.7780/kjrs.2009.25.5.411
  11. Na, S. I., J. K. Park, and J. H. Park, 2012, Development of Korean Paddy Rice Yield Prediction Model (KRPM) using Meteorological Element and MODIS NDVI. Journal of the Korean Sociery of Agricultural Engineers 54(3): 141-148 (in Korean). https://doi.org/10.5389/KSAE.2012.54.3.141
  12. Park, J. H., and K. S. Ryu, 2005, Variation Characteristics of Vegetation Index (NDVI) using AVHRR Images and Spectral Reflectance Characteristics. The Korea Society of Environmental Restoration Technology 8(2): 33-40 (in Korean).
  13. Park, J. H., and S. I. Na, 2006, Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images. The Korea Society of Environmental Restoration Technology 9(6): 1-12 (in Korean).
  14. Park, J. K., J. H. Park, H. S. Shin, and S. I. Na, 2008, Variation Characteristics of NDVI using MODIS (Terra) Images in Korea. Proceedings of the Korean Sociery of Agricultural Engineers Conference (in Korean).
  15. Pearson, R. L., and L. D. Miller, 1972. Remote mapping of standing crop biomass for estimation of the productivity of strong grass prairie. Proceedings of the 8th International Symposium on Remote Sensing Environment II. Pawnee National Grasslands, Colorado, Oct. 2-6. 1355-1379.
  16. Rouse, J. W., R. H. Hans., J. A. Schell., P. W. Peering, and J. C. Harlar, 1974. Monitoring the vernal advancement of retrogradation of natural vegetation, Type III, Final Report, NASA/GSF, Greenbelt, MP,371.
  17. Ryu, J. H. J. E. Moon, Y. B. Son, S. I. Cho, J. E. Min, C. S. Yang, Y. H. Ahn, and J. S. Shim, 2010, Prelaunch Study of Validation for the Geostationary Ocean Color Imager (GOCI). Korean Journal of Remote Sensing 26(2): 251-262 (in Korean). https://doi.org/10.7780/kjrs.2010.26.2.251
  18. Steven, M. D., T. J. Malthus, F. Baret, H. Xu, and M. J. Chopping, 2003. Intercalibration of vegetation indices from different sensor systems. Remote Sensing of Environment 88(4): 412-422. https://doi.org/10.1016/j.rse.2003.08.010
  19. Teillet, P. M., J. L. Kaufman, B. L. Markham, R. R. Irish, G. Fedosejevs, and J. C. Storey, 2001. Radiometric cross-calibration of the landsat-7 ETM+ and landsat-5 TM sensors based on tandem data sets. Remote Sensing of Environment 78: 39-54. https://doi.org/10.1016/S0034-4257(01)00248-6
  20. Tarnavsky, E. V., S. Garrigues, and M. E. Brown, 2008. Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products. Remote Sensing of Environment 112: 535-549. https://doi.org/10.1016/j.rse.2007.05.008