DOI QR코드

DOI QR Code

Chl a Fluorescence Characterization and Biomarker Selection from Ricciocarpos natans under Cadmium Stress

카드뮴 독성 평가를 위한 은행이끼의 엽록소형광 분석 및 환경지표 선발

  • Oh, Soonja (Agricultural Research Center for Climate Change, National Institute of Horticultural and Herbal Science) ;
  • Koh, Seok Chan (Department of Biology, Jeju National University)
  • 오순자 (농촌진흥청 국립원예특작과학원 온난화대응농업센터) ;
  • 고석찬 (제주대학교 생물학과)
  • Received : 2013.02.20
  • Accepted : 2013.05.30
  • Published : 2013.11.29

Abstract

The effects of cadmium ions ($Cd^{2+}$) on the Chl a fluorescence of Ricciocarpos natans were investigated in order to determine whether Chl fluorescence can be used as a biomarker to estimate the physiological responses of plants to cadmium stress. In all plants treated with $Cd^{2+}$, the image of Fv/Fm, which represents the maximum photochemical efficiency of PSII, changed as the $Cd^{2+}$ concentration increased, when treated for 48 h or more. Changes of ${\Phi}_{PSII}$ and $Q_P$ images were recognized even at 10 ${\mu}M$ $Cd^{2+}$. The Chl a O-J-I-P fluorescence transient was also affected even at 10 ${\mu}M$ $Cd^{2+}$. The fluorescence yield decreased considerably in steps J, I and P in plants treated with $Cd^{2+}$, although a typical polyphasic rise was observed in non-treated plants. The Chl fluorescence parameters, Fm, Fv/Fo, Sm, SFIabs, PIabs and ETo/CS, decreased as the $Cd^{2+}$ concentration increased, while the Mo and Kn parameters increased. Peroxidase activity decreased significantly and catalase activity increased as the $Cd^{2+}$ concentration increased. Because of its sensitivity to $Cd^{2+}$ Ricciocarpos natans is useful in experiments investigating the responses of plants to cadmium exposure. Several parameters (Fm, Fv/Fo, Sm, SFIabs, PIabs, ETo/CS, Mo and Kn) can be applied to determine quantitatively the physiological states of plants under cadmium stress.

Keywords

References

  1. Abu-Muriefah, S. S., 2008, Growth parameters and elemental status of cucumber (Cucumis sativus) seedlings in response to cadmium accumulation, Int. J. Agric. Biol., 10, 261-266.
  2. Alscher, R. G., Hess, J. L., 1993, Antioxidants in higher plants, CRC Press, Boca Raton, 1-174.
  3. An, Y. J., Nam, S. H., Lee, J. K., 2007, Domestic test species for aquatic toxicity assessment in Korea, Korean J. Limnol., 40(1), 1-13 (in Korean).
  4. Asada, K., 1999, The water-water cycle in chloroplast: Scavenging of active oxygen an dissipation of excess photons, Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 601-639. https://doi.org/10.1146/annurev.arplant.50.1.601
  5. Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., Havaux, M., 2001, Leaf chlorosis in oilseed repe plants (Brassica napus) grown on cadmium polluted soil: causes and consequences for photosynthesis and growth, Planta, 212, 696-709. https://doi.org/10.1007/s004250000439
  6. Chollet, R., 1993, Screening inhibitors (antimetabolites) of the biosynthesis or function of amino acids or vitamins with Lemna assay, in: Boger P., Sandmann G. (eds.), Target assay of modern herbicides and related phytotoxicity compounds, Lewis, London, UK, 143-149.
  7. Chugh, L. K., Sawhney, S. K., 1999, Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium, Plant Physiol. Biochem., 37, 297-303. https://doi.org/10.1016/S0981-9428(99)80028-X
  8. Ekmekci, Y., Tanyolac, D., Ayhan, B., 2008, Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars, J. Plant Physiol., 165, 600-611. https://doi.org/10.1016/j.jplph.2007.01.017
  9. Foyer, C. H., Lelandais, M., Edwards, E. A., Mullineaux, P.M., 1991, The role of ascorbate in plant, interactions with photosynthesis and regulatory significance, in: Pell, E. J. and Steffen, K. L., (eds.), Active oxygen/oxidative stress and plant metabolism, American Society of Plant Physiologists, Rockville, 131-144.
  10. Govindjee, 1995, Sixty-three years since Kautsky: Chlorophyll a fluorescence, Aust. J. Plant Physiol., 22, 131-160. https://doi.org/10.1071/PP9950131
  11. Gzyl, J., Rymer, K., Gwozdz, E. A., 2009, Differential response of antioxidant enzymes to cadmium stress in tolerant and sensitive cell line of cucumber (Cucumis sativus L.), Acta Biochim. Pol., 56(4), 723-727.
  12. Inze, D., Van Montagu, M., 1995, Oxidative stress in plants, Curr. Opin. Biotechnol., 6, 153-158. https://doi.org/10.1016/0958-1669(95)80024-7
  13. Jarvis, S. C., Jones, L. H. P., Hopper, M. J., 1976, Cadmium uptake from solution by plants and its transport from roots to shoots, Plant Soil, 44, 179-191. https://doi.org/10.1007/BF00016965
  14. Kahle, H., 1993, Response of roots of trees to heavy metals, Environ. Exp. Bot., 33(1), 99-119.
  15. Kelly, J. M., Parker, G. R., McFee, W. W., 1979, Heavy metal accumulation and growth of seedlings of five forest species as influenced by soil cadmium level, J. Environ. Qual., 8, 361-364.
  16. Krupa, Z., Moniak, M., 1998, The stage of leaf maturity implicates the response of the photosynthetic apparatus to cadmium toxicity, Plant Sci., 138, 149-156. https://doi.org/10.1016/S0168-9452(98)00159-9
  17. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 277, 680-685.
  18. Mahmood, S., Farzana, K., Haq, M.Z. U., Ahmad, S., Raiz, F., Ullah, A., 2007, Biochemical responses of Pisum sativum L. under cadmium and mercury regimes, J. Chem. Soc. Pak., 29(4), 379-382.
  19. Mallick, A., Mohn, F. H., 2003, Use of chlorophyll fluorescence in metal stress research: a case study with green microalga Scenedesmus, Ecotoxical. Environ. Saf., 55, 64-69. https://doi.org/10.1016/S0147-6513(02)00122-7
  20. Nedbal, L., Soukupova, J., Whitmarsh, J., Trtilek, M., 2000, Postharvest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality, Photosynthetica, 38(4), 571-579.
  21. Nedbal, L., Whitmarsh, J., 2004, Chlorophyll fluorescence imaging of leaves and fruits, in: Papageorgiu, G., Govindjee, (eds.), Chlorophyll a fluorescence: a signature of photosynthesis, Dordrecht, The Netherlands: Springer, 389-407.
  22. Nriagu, J. O., Panyna, J. M., 1988, Quantitative assessment of worldwide contamination of air, water and soils by trace metals, Nature, 333, 134-139. https://doi.org/10.1038/333134a0
  23. Oh, S. J., Zhin, K. L., Koh, S. C., 2009, Characterization of Chl a fluorescence of hydrophytes under cadmium stress, J. Environ. Sci., 18(12), 1361-1368 (in Korean). https://doi.org/10.5322/JES.2009.18.12.1361
  24. Padmaja, K., Parsad, D. D. K., Parsad, A. R. K., 1990, Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedling by cadmium acetate, Photosynthetica, 24, 399-404.
  25. Prasad, M. N. V., 1995, Cadmium toxicity and tolerance in vascular plants. Environ. Exp. Bot., 35(4), 525-545.
  26. Rao, M. V., Paliyath, G., Ormrod, D. P., 1996, Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana, Plant Physiol., 110, 125-136. https://doi.org/10.1104/pp.110.1.125
  27. Sigfridsson, K. G. V., Bernat, G., Mamedov, F., Styring, S., 2004, Molecular interference of $Cd^{2+}$ with photosystem II, Biochim. Biophys. Acta., 1659, 19-31. https://doi.org/10.1016/j.bbabio.2004.07.003
  28. Srivastava, A., Guisse, B., Greppin, H., Strasser, R. J., 1997, Regulation of antenna structure and electron transport in PSII of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP, Biochem. Biophys. Acta., 1320, 95-106.
  29. Stirbet, A., Govindjee, Strasser, B. J., Strasser, R. J., 1998, Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation, J. Theor. Biol., 193, 131-151. https://doi.org/10.1006/jtbi.1998.0692
  30. Stobart, A. K., Griffiths, W. T., Ameen-Bukhari, I., Sherwood, R. P., 1985, The effect of $Cd^{2+}$ on the biosynthesis of chlorophyll in leaves of barley, Physiol. Plant., 63, 293-298. https://doi.org/10.1111/j.1399-3054.1985.tb04268.x
  31. Strasser, B. J., Strasser, R. J., 1995, Measuring fast fluorescence transients to address environmental questions: The JIP test, in: Mathis, P. (ed.), Photosynthesis: From Light to Biosphere, Kluwer Academic, Dordrecht, 977-980.
  32. Strasser, R. J., Govindjee, 1992, The Fo and the O-J-I-P fluorescence rise in higher plants and algae, in: Argyroudi-Akoyunoglou, J. H. (ed.), Regulation of Chloroplast Biogenesis, Plenum Press, New York, 423-426.
  33. Woodbury, W., Spencer, A. K., Sthamann, M. A., 1971, An improved procedure using ferricyanide for detecting catalase isoenzyme, Anal. Biochem., 44, 301-305. https://doi.org/10.1016/0003-2697(71)90375-7
  34. Zheng, G., Lv, H. P., Gao, S., Wang, S. R., 2010, Effects of cadmium on growth and antioxidant responses in Glycyrrhiza uralensis seedlings, Plant Soil Environ., 56(11), 508-515.