DOI QR코드

DOI QR Code

GENERALIZED HYERS-ULAM-RASSIAS STABILITY FOR A GENERAL ADDITIVE FUNCTIONAL EQUATION IN QUASI-β-NORMED SPACES

  • Received : 2013.01.02
  • Published : 2013.11.30

Abstract

In this paper, we investigate the generalized HyersUlam-Rassias stability of the following additive functional equation $$2\sum_{j=1}^{n}f(\frac{x_j}{2}+\sum_{i=1,i{\neq}j}^{n}\;x_i)+\sum_{j=1}^{n}f(x_j)=2nf(\sum_{j=1}^{n}x_j)$$, in quasi-${\beta}$-normed spaces.

Keywords

References

  1. J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989.
  2. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  3. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, RI, 2000.
  4. C. Borelli and G. L. Forti, On a general Hyers-Ulam stability result, Internat. J. Math. Math. Sci. 18 (1995), no. 2, 229-236. https://doi.org/10.1155/S0161171295000287
  5. D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223-237. https://doi.org/10.1090/S0002-9904-1951-09511-7
  6. L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Article 4, 7 pp.
  7. L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara, Ser. Mat.-Inform. 41 (2003), no. 1, 25-48.
  8. L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Iteration theory (ECIT '02), 43-52, Grazer Math. Ber., 346, Karl-Franzens-Univ. Graz, Graz, 2004.
  9. S. Czerwik, The stability of the quadratic functional equation, In: Th. M. Rassias, J. Tabor (Eds.), Stability of Mappings of Hyers-Ulam Type, pp. 81-91, Hadronic Press, Florida, 1994.
  10. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. https://doi.org/10.1006/jmaa.1994.1211
  11. P. Gavruta and L. Gavruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl. 1 (2010), no. 2, 11-18.
  12. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  13. D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston,Basel, Berlin, 1998.
  14. K. Jun and Y. Lee, On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality, Math. Inequal. Appl. 4 (2001), no. 1, 93-118.
  15. S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
  16. S.-M. Jung and J. M. Rassias, A fixed point approach to the stability of a functional equation of the spiral of Theodorus, Fixed Point Theory Appl. 2008 (2008), Art. ID 945010, 7 pp.
  17. Pl. Kannappan,Functional Equations and Inequalities with Applications, Springer, New York, 2009.
  18. G. H. Kim, On the stability of the quadratic mapping in normed spaces, Int. J. Math. Math. Sci. 25 (2001), no. 4, 217-229. https://doi.org/10.1155/S0161171201004707
  19. F. Moradlou, Additive functional inequalities and derivations on Hilbert C*-modules, Glasg. Math. J. 55 (2013), 341-348. https://doi.org/10.1017/S0017089512000596
  20. F. Moradlou, A. Najati, and H. Vaezi, Stability of homomorphisms and derivations on C*-ternary rings associated to an Euler-Lagrange type additive mapping, Results Math. 55 (2009), no. 3-4, 469-486. https://doi.org/10.1007/s00025-009-0410-0
  21. F. Moradlou, H. Vaezi, and G. Z. Eskandani, Hyers-Ulam-Rassias stability of a quadratic and additive functional equation in quasi-Banach spaces, Mediterr. J. Math. 6 (2009), no. 2, 233-248. https://doi.org/10.1007/s00009-009-0007-6
  22. F. Moradlou, H. Vaezi, and C. Park, Fixed points and stability of an additive functional equation of n-Apollonius type in C*-algebras, Abstr. Appl. Anal. 2008 (2008), Art. ID 672618, 13 pp.
  23. F. Moradlou, H. Vaezi, and C. Park, Approximate Euler-Lagrange-Jensen type additive mapping in multi-Banach spaces, A Fixed Point Approach, Commun. Korean Math. Soc. 28 (2013), no. 2, 319-333. https://doi.org/10.4134/CKMS.2013.28.2.319
  24. P. M. Pardalos, P. G. Georgiev, and H. M. Srivastava (eds.), Nonlinear Analysis, Stability, Approximation and Inequalities. In honor of Themistocles M. Rassias on the occasion of his 60th birthday, Springer, New York, 2012.
  25. C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), no. 2, 711-720. https://doi.org/10.1016/S0022-247X(02)00386-4
  26. C. Park, On an approximate automorphism on a C*-algebra, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1739-1745. https://doi.org/10.1090/S0002-9939-03-07252-6
  27. C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005), no. 1, 79-97. https://doi.org/10.1007/s00574-005-0029-z
  28. C. Park and Th. M. Rassias, Hyers-Ulam stability of a generalized Apollonius type quadratic mapping, J. Math. Anal. Appl. 322 (2006), no. 1, 371-381. https://doi.org/10.1016/j.jmaa.2005.09.027
  29. C. Park and Th. M. Rassias, Homomorphisms in C*-ternary algebras and JB*-triples, J. Math. Anal. Appl. 337 (2008), no. 1, 13-20. https://doi.org/10.1016/j.jmaa.2007.03.073
  30. V. Radu, The fixed point alternative and stability of functional equations, Fixed Point Theory IV(1) (2003), no. 1, 91-96.
  31. J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), no. 1, 126-130. https://doi.org/10.1016/0022-1236(82)90048-9
  32. J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984), no. 4, 445-446.
  33. J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989), no. 3, 268-273. https://doi.org/10.1016/0021-9045(89)90041-5
  34. J. M. Rassias, Alternative contraction principle and Ulam stability problem, Math. Sci. Res. J. 9 (2005), no. 7, 190-199.
  35. J. M. Rassias and H. M. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasi-$\beta$-normed spaces, J. Math. Anal. Appl. 356 (2009), no. 1, 302-309. https://doi.org/10.1016/j.jmaa.2009.03.005
  36. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  37. Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), no. 2, 352-378. https://doi.org/10.1006/jmaa.2000.6788
  38. Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284. https://doi.org/10.1006/jmaa.2000.7046
  39. Th. M. Rassias and J. Brzdek (eds.), Functional Equations in Mathematical Analysis, Springer, New York, 2012.
  40. S. Rolewicz, Metric Linear Spaces, PWN-Polish Sci. Publ., Warszawa, Reidel, Dordrecht, 1984.
  41. F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. https://doi.org/10.1007/BF02924890
  42. S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.