References
- J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989.
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, RI, 2000.
- C. Borelli and G. L. Forti, On a general Hyers-Ulam stability result, Internat. J. Math. Math. Sci. 18 (1995), no. 2, 229-236. https://doi.org/10.1155/S0161171295000287
- D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223-237. https://doi.org/10.1090/S0002-9904-1951-09511-7
- L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Article 4, 7 pp.
- L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara, Ser. Mat.-Inform. 41 (2003), no. 1, 25-48.
- L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Iteration theory (ECIT '02), 43-52, Grazer Math. Ber., 346, Karl-Franzens-Univ. Graz, Graz, 2004.
- S. Czerwik, The stability of the quadratic functional equation, In: Th. M. Rassias, J. Tabor (Eds.), Stability of Mappings of Hyers-Ulam Type, pp. 81-91, Hadronic Press, Florida, 1994.
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. https://doi.org/10.1006/jmaa.1994.1211
- P. Gavruta and L. Gavruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl. 1 (2010), no. 2, 11-18.
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston,Basel, Berlin, 1998.
- K. Jun and Y. Lee, On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality, Math. Inequal. Appl. 4 (2001), no. 1, 93-118.
- S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
- S.-M. Jung and J. M. Rassias, A fixed point approach to the stability of a functional equation of the spiral of Theodorus, Fixed Point Theory Appl. 2008 (2008), Art. ID 945010, 7 pp.
- Pl. Kannappan,Functional Equations and Inequalities with Applications, Springer, New York, 2009.
- G. H. Kim, On the stability of the quadratic mapping in normed spaces, Int. J. Math. Math. Sci. 25 (2001), no. 4, 217-229. https://doi.org/10.1155/S0161171201004707
- F. Moradlou, Additive functional inequalities and derivations on Hilbert C*-modules, Glasg. Math. J. 55 (2013), 341-348. https://doi.org/10.1017/S0017089512000596
- F. Moradlou, A. Najati, and H. Vaezi, Stability of homomorphisms and derivations on C*-ternary rings associated to an Euler-Lagrange type additive mapping, Results Math. 55 (2009), no. 3-4, 469-486. https://doi.org/10.1007/s00025-009-0410-0
- F. Moradlou, H. Vaezi, and G. Z. Eskandani, Hyers-Ulam-Rassias stability of a quadratic and additive functional equation in quasi-Banach spaces, Mediterr. J. Math. 6 (2009), no. 2, 233-248. https://doi.org/10.1007/s00009-009-0007-6
- F. Moradlou, H. Vaezi, and C. Park, Fixed points and stability of an additive functional equation of n-Apollonius type in C*-algebras, Abstr. Appl. Anal. 2008 (2008), Art. ID 672618, 13 pp.
- F. Moradlou, H. Vaezi, and C. Park, Approximate Euler-Lagrange-Jensen type additive mapping in multi-Banach spaces, A Fixed Point Approach, Commun. Korean Math. Soc. 28 (2013), no. 2, 319-333. https://doi.org/10.4134/CKMS.2013.28.2.319
- P. M. Pardalos, P. G. Georgiev, and H. M. Srivastava (eds.), Nonlinear Analysis, Stability, Approximation and Inequalities. In honor of Themistocles M. Rassias on the occasion of his 60th birthday, Springer, New York, 2012.
- C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), no. 2, 711-720. https://doi.org/10.1016/S0022-247X(02)00386-4
- C. Park, On an approximate automorphism on a C*-algebra, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1739-1745. https://doi.org/10.1090/S0002-9939-03-07252-6
- C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005), no. 1, 79-97. https://doi.org/10.1007/s00574-005-0029-z
- C. Park and Th. M. Rassias, Hyers-Ulam stability of a generalized Apollonius type quadratic mapping, J. Math. Anal. Appl. 322 (2006), no. 1, 371-381. https://doi.org/10.1016/j.jmaa.2005.09.027
- C. Park and Th. M. Rassias, Homomorphisms in C*-ternary algebras and JB*-triples, J. Math. Anal. Appl. 337 (2008), no. 1, 13-20. https://doi.org/10.1016/j.jmaa.2007.03.073
- V. Radu, The fixed point alternative and stability of functional equations, Fixed Point Theory IV(1) (2003), no. 1, 91-96.
- J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), no. 1, 126-130. https://doi.org/10.1016/0022-1236(82)90048-9
- J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984), no. 4, 445-446.
- J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989), no. 3, 268-273. https://doi.org/10.1016/0021-9045(89)90041-5
- J. M. Rassias, Alternative contraction principle and Ulam stability problem, Math. Sci. Res. J. 9 (2005), no. 7, 190-199.
-
J. M. Rassias and H. M. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasi-
$\beta$ -normed spaces, J. Math. Anal. Appl. 356 (2009), no. 1, 302-309. https://doi.org/10.1016/j.jmaa.2009.03.005 - Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), no. 2, 352-378. https://doi.org/10.1006/jmaa.2000.6788
- Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284. https://doi.org/10.1006/jmaa.2000.7046
- Th. M. Rassias and J. Brzdek (eds.), Functional Equations in Mathematical Analysis, Springer, New York, 2012.
- S. Rolewicz, Metric Linear Spaces, PWN-Polish Sci. Publ., Warszawa, Reidel, Dordrecht, 1984.
- F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. https://doi.org/10.1007/BF02924890
- S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.