DOI QR코드

DOI QR Code

REFLEXIVE PROPERTY ON IDEMPOTENTS

  • Kwak, Tai Keun (Department of Mathematics Daejin University) ;
  • Lee, Yang (Department of Mathematics Education Pusan National University)
  • Received : 2012.07.19
  • Published : 2013.11.30

Abstract

The reflexive property for ideals was introduced by Mason and has important roles in noncommutative ring theory. In this note we study the structure of idempotents satisfying the reflexive property and introduce reflexive-idempotents-property (simply, RIP) as a generalization. It is proved that the RIP can go up to polynomial rings, power series rings, and Dorroh extensions. The structure of non-Abelian RIP rings of minimal order (with or without identity) is completely investigated.

Keywords

References

  1. R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
  2. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
  3. G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, Ring theory (Granville, OH, 1992), 102-129, World Sci. Publ., River Edge, NJ, 1993.
  4. P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
  5. J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85-88. https://doi.org/10.1090/S0002-9904-1932-05333-2
  6. K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 75 (1968), no. 5, 512-514. https://doi.org/10.2307/2314716
  7. S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186-199. https://doi.org/10.1016/j.jalgebra.2006.02.032
  8. N. Jacobson, Some remarks on one-sided inverses, Proc. Amer. Math. Soc. 1 (1950), 352-355.
  9. J. Y. Kim, Certain rings whose simple singular modules are GP-injective, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 7, 125-128. https://doi.org/10.3792/pjaa.81.125
  10. J. Y. Kim and J. U. Baik, On idempotent reflexive rings, Kyungpook Math. J. 46 (2006), no. 4, 597-601.
  11. N. K. Kim, Y. Lee, and Y. Seo, Structure of idempotents in rings without identity, (submitted).
  12. T. K. Kwak and Y. Lee, Reflexive property of rings, Comm. Algebra, 40 (2012), no. 4, 1576-1594. https://doi.org/10.1080/00927872.2011.554474
  13. T. K. Kwak, Y. Lee, and S. J. Yun, The Armendariz property on ideals, J. Algebra 354 (2012), 121-135. https://doi.org/10.1016/j.jalgebra.2011.12.019
  14. J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
  15. T. K. Lee and T. L. Wong, On Armendariz Rings, Houston J. Math. 29 (2003), no. 3, 583-593.
  16. T. K. Lee and Y. Q. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (2004), no. 6, 2287-2299. https://doi.org/10.1081/AGB-120037221
  17. G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123. https://doi.org/10.1081/AGB-100002173
  18. G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709-1724. https://doi.org/10.1080/00927878108822678
  19. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons Ltd., 1987.
  20. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
  21. J. C. Shepherdson, Inverses and zero-divisors in matrix ring, Proc. London Math. Soc. (3) 1 (1951), 71-85.
  22. L. Xu and W. Xue, Structure of minimal non-commutative zero-insertive rings, Math. J. Okayama Univ. 40 (1998), 69-76.

Cited by

  1. Reflexivity with maximal ideal axes vol.45, pp.10, 2017, https://doi.org/10.1080/00927872.2016.1222398
  2. CORRIGENDUM TO "REFLEXIVE PROPERTY ON IDEMPOTENTS" [BULL. KOREAN MATH. SOC. 50 (2013), NO. 6, 1957-1972] vol.53, pp.6, 2016, https://doi.org/10.4134/BKMS.b160513
  3. Matrix Rings over Reflexive Rings vol.25, pp.03, 2018, https://doi.org/10.1142/S1005386718000317
  4. Reflexive property on rings with involution pp.1793-7183, 2018, https://doi.org/10.1142/S1793557120500114